

CEN
 CWA 14050-42
WORKSHOP January 2005

AGREEMENT

ICS 35.200; 35.240.15; 35.240.40

English version

Extensions for Financial Services (XFS) interface specification – Release
3.03 – Part 42: PIN Keypad Device Class Interface - Migration from

Version 3.02 to Version 3.03 -
Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the
constitution of which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN Management Centre can be held accountable for the
technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland,
France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland,
Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

© 2005 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

 Ref. No. CWA 14050-42:2005 D/E/F

Page 2
CWA 14050-42: 2005

 Table of Contents

Foreword... 3

1. General... 5

2. Backwards Compatability .. 5
2.1 SECURE MANUAL KEY ENTRY .. 5
2.2 PUBLIC KEY DELETION AUTHENTICATION ON RKL SIGNATURE SCHEME .. 5
2.3 SYMMETRIC KEY KEY CHECK VALUE GENERATION ... 5
2.4 ZKA PROTGENAS PROTOCOL .. 5

3. New Chapters .. 6
3.1 GERMAN ZKA GELDKARTE.. 6

3.1.1 Protocol WFS_PIN_ PROTGENAS..6
3.2 SECURE KEY ENTRY .. 8

3.2.1 Keyboard Layout ..8
3.2.2 Command Usage...14

4. New Info Commands .. 15
4.1 WFS_INF_PIN_SECUREKEY_DETAIL.. 15

5. Changes to Existing Info Commands ... 19
5.1 WFS_INF_PIN_KEY_DETAIL... 19
5.2 WFS_INF_PIN_KEY_DETAIL_EX.. 20

6. New Execute Commands ... 21
6.1 NORMAL PIN COMMANDS .. 21

6.1.1 WFS_CMD_PIN_SECUREKEY_ENTRY ...21
6.1.2 WFS_CMD_PIN_GENERATE_KCV..24

7. Changes to Existing Execute Commands.. 26
7.1 NORMAL PIN COMMANDS .. 26

7.1.1 WFS_CMD_PIN_IMPORT_KEY..26
7.1.2 WFS_CMD_PIN_INITIALIZATION...28
7.1.3 WFS_CMD_PIN_SECURE_MSG_SEND ..29
7.1.4 WFS_CMD_PIN_SECURE_MSG_RECEIVE ..30
7.1.5 WFS_CMD_PIN_IMPORT_KEY_EX...31
7.2 REMOTE KEY LOADING USING SIGNATURES ... 34

7.2.1 WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY...34

8. New Events.. 36

9. Changes to Existing Events... 36
9.1 WFS_EXEE_PIN_KEY.. 36

10. C - Header File ... 37

Page 3
CWA 14050-42: 2005

Foreword

This CWA is revision 3.03 of the XFS interface specification.

The CEN/ISSS XFS Workshop gathers suppliers as well as banks and other financial service companies. A list of
companies participating in this Workshop and in support of this CWA is available from the CEN/ISSS Secretariat.

This CWA was formally approved by the XFS Workshop meeting on 2004-09-24. The specification is continuously
reviewed and commented in the CEN/ISSS Workshop on XFS. It is therefore expected that an update of the
specification will be published in due time as a CWA, superseding this revision 3.03.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI); Programmer's Reference

Part 2: Service Classes Definition; Programmer's Reference

Part 3: Printer Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Class Interface - Programmer's Reference

Part 15: Cash In Module Device Class Interface- Programmer's Reference

Part 16: Application Programming Interface (API) - Service Provider Interface (SPI) - Migration from Version 2.0
(see CWA 13449) to Version 3.0 (this CWA) - Programmer's Reference

Part 17: Printer Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this CWA) -
Programmer's Reference

Part 18: Identification Card Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.00
(see CWA 14050-4:2000; superseded) - Programmer's Reference

Part 19: Cash Dispenser Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this
CWA) - Programmer's Reference

Part 20: PIN Keypad Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.00 (see
CWA 14050-6:2000; superseded) - Programmer's Reference

Part 21: Depository Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this
CWA) - Programmer's Reference

Part 22: Text Terminal Unit Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0
(this CWA) - Programmer's Reference

Part 23: Sensors and Indicators Unit Device Class Interface - Migration from Version 2.0 (see CWA 13449) to
Version 3.01 (this CWA) - Programmer's Reference

Part 24: Camera Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this CWA)
- Programmer's Reference

Part 25: Identification Card Device Class Interface - PC/SC Integration Guidelines

Page 4
CWA 14050-42: 2005

Part 26: Identification Card Device Class Interface - Migration from Version 3.0 (see CWA 14050-4:2000;
superseded) to Version 3.02 (this CWA) - Programmer's Reference

Part 27: PIN Keypad Device Class Interface - Migration from Version 3.0 (see CWA 14050-6:2000; superseded) to
Version 3.02 (see CWA 14050-6:2003; superseded) - Programmer's Reference

Part 28: Cash In Module Device Class Interface - Migration from Version 3.0 (see CWA 14050-15:2000;
superseded) to Version 3.02 (this CWA) - Programmer's Reference

Part 42: PIN Keypad Device Class Interface - Migration from Version 3.02 (see CWA 14050-6:2003; superseded)
to Version 3.03 (this CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the
CWA specifications, which are not requiring functional changes. The current version of the Release Notes is
available online from http://www.cenorm.be/isss/Workshop/XFS.

Parts 29 through 41 constitute an optional addendum to this CWA. They define the integration between the SNMP
standard and the set of status and statistical information exported by the service providers.

Part 29: XFS MIB Architecture and SNMP Extensions – Programmer’s Reference

Part 30: XFS MIB Device Specific Definitions - Printer Device Class

Part 31: XFS MIB Device Specific Definitions - Identification Card Device Class

Part 32: XFS MIB Device Specific Definitions - Cash Dispenser Device Class

Part 33: XFS MIB Device Specific Definitions - PIN Keypad Device Class

Part 34: XFS MIB Device Specific Definitions - Check Reader/Scanner Device Class

Part 35: XFS MIB Device Specific Definitions - Depository Device Class

Part 36: XFS MIB Device Specific Definitions - Text Terminal Unit Device Class

Part 37: XFS MIB Device Specific Definitions - Sensors and Indicators Unit Device Class

Part 38: XFS MIB Device Specific Definitions - Camera Device Class

Part 39: XFS MIB Device Specific Definitions - Alarm Device Class

Part 40: XFS MIB Device Specific Definitions - Card Embossing Unit Class

Part 41: XFS MIB Device Specific Definitions - Cash In Module Device Class

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is furnished for informational purposes only and is subject to change without notice. CEN/ISSS
makes no warranty, express or implied, with respect to this document.

Page 5
CWA 14050-42: 2005

1. General

The PIN has been enhanced with the following functionality:

• The capability to load a symmetric DES key using a secure manual multi-part encryption key entry process.
• The capability to generate a Key Check Value (KCV) for a symmetric key.
• The capability to authenticate the request to delete a public key loaded through Signature based Remote

Key Loading scheme.
• Support for the ZKA PROTGENAS protocol.

2. Backwards Compatability

2.1 Secure Manual Key Entry
Secure Manual Key Entry was added through the addition of two new commands and with the definition of
additional flag values for four existing commands.

The new commands are WFS_INF_PIN_SECUREKEY_DETAIL and WFS_CMD_PIN_SECUREKEY_ENTRY.

The modified commands are WFS_INF_PIN_KEY_DETAIL, WFS_INF_PIN_KEY_DETAIL,
WFS_CMD_PIN_IMPORT_KEY and WFS_CMD_PIN_IMPORT_KEY_EX.

2.2 Public Key Deletion Authentication on RKL Signature Scheme
The capability to authenticate the deletion of a public key loaded through the Signature based Remote Key Loading
scheme was added without changing the interface in any way. The descriptions of the
WFS_CMD_PIN_INITIALIZATION and WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY were modified.

2.3 Symmetric Key Key Check Value Generation

The capability to generate a Key Check Value for a symmetric key was added through the new command
WFS_CMD_PIN_GENERATE_KCV.

2.4 ZKA PROTGENAS Protocol
The ZKA protocol PROTGENAS was added to the existing WFS_CMD_PIN_SECURE_MSG_SEND and
WFS_CMD_PIN_SECURE_MSG_RECEIVE commands. The functionality was added through the definition of a
new protocol literal WFS_PIN_PROTGENAS and the addition of existing PIN error codes to these commands.

Page 6
CWA 14050-42: 2005

3. New Chapters

3.1 German ZKA GeldKarte

3.1.1 Protocol WFS_PIN_ PROTGENAS
This protocol provides the capability to create a PAC (encrypted Pin-Block) and to create and verify a MAC for a
proprietary message. As the service provider doesn’t know the message format, it cannot complete the message by
adding security relevant fields like random values, PAC and MAC, like it does for the protocol
WFS_PIN_PROTISOAS. Only the application is able to place these fields into the proper locations. Using this
protocol, an application can generate the PAC and the random values in separate steps, adds them to the proprietary
send-message, and finally lets the service provider generate the MAC. The generated MAC can then be added to the
send-message as well.
For a received message, the application extracts the MAC and the associated random value and passes them along
with the entire message data to the service provider for MAC verification.
PAC generation supports Pin-Block ISO-Format 0 and 1.

Command description:
The first byte of field lpbMsg of WFSPINSECMSG contains a subcommand, which is used to qualify the type of
operation. The remaining bytes of the command data are depending on the value of the subcommand.

The following sub-commands are defined:
• GeneratePAC (Code 0x01)

Returns the encrypted Pin-Block together with generation and version values of the Master Key and the PAC
random value

• GetMACRandom (Code 0x02)
Returns the generation and version values of the Master Key and the MAC random value

• GenerateMAC (Code 0x03)
Returns the generated MAC for the message data passed in. Note, that the MAC is generated for exactly the
data that is presented (contents and sequence). Data, that should not go into MAC calculation must not be
passed in.

• VerifyMAC (Code 0x04)
Generates a MAC for the data passed in and compares it with the provided MAC value. MAC random value,
key generation and key version must be passed in separately.

Command/Message sequence:

Command
WFS_CMD_PIN_...

lpbMsg in lpbSecMsgIn lpbMsg in lpbSecMsgOut Service Provider´s
actions

SECURE_MSG_SEND Byte 0: 0x01
(Generate PAC)
Byte 1: format (0 or 1)
Byte 2-9: ANF (Primary
Account Number, if
length is less than 12
digits, value must be left
padded with binary 0,
only applicable for
format 0)

Byte 0: key generation
Byte 1: key version
Byte 2-17: PAC random
Byte 18-25: PAC value
(all values are binary
values)

Generates a session key for
PAC generation and
finally the PAC
itself.
Determine generation and
version values of Master-
Key and return them along
with the random value.

SECURE_MSG_SEND Byte 0: 0x02
(Get MAC Random)

Byte 0: key generation
Byte 1: key version
Byte 2-17: MAC random
(all values are binary
values)

Generates a session key for
MAC generation (see next
step below)
Determine generation and
version values of Master-

Page 7
CWA 14050-42: 2005

Key and return them along
with the random value

SECURE_MSG_SEND Byte 0: 0x03
(Generate MAC)
Byte 1-n: Message to be
mac’ed
(all values are binary
values)

Byte 0-7: generated
MAC
 (binary value)

Generates MAC over bytes
1-n of the inbound
message using the session
key created in the previous
step.

SECURE_MSG_RECEIVE Byte 0: 0x04
(Verify MAC)
Byte 1: key generation
Byte 2: key version
Byte 3-18: MAC random
Byte 19-26: MAC
Byte 27-n: Message to be
verified
(all values are binary
values)
Note: If no message has
been received, this
function must be called
by omitting Bytes 1-n

N/a Generates a session key
using the Master key
identified by key
generation and version by
using the random value
passed in.
Generates a MAC for the
message data passed in and
compare the resulting
MAC with the MAC
passed in.

Returns:

The error code WFS_ERR_PIN_FORMATINVALID is returned when
• the subcommand in Byte 0 of lpbMsg for Execute Command WFS_CMD_PIN_SECURE_MSG_SEND with

protocol WFS_PIN_PROTGENAS is not 01, 02 or 03.
• the subcommand in Byte 0 of lpbMsg for Execute Command WFS_CMD_PIN_SECURE_MSG_RECEIVE

with protocol WFS_PIN_PROTGENAS is not 04.
• the subcommand in Byte 0 of lpbMsg for Execute Command WFS_CMD_PIN_SECURE_MSG_SEND with

protocol WFS_PIN_PROTGENAS is 01 and Byte 1 is not 00 and not 01 (Pin-Block format is not ISO-0 and
ISO-1)

• the individual command data length for a subcommand is less than specified

The error code WFS_ERR_PIN_HSMSTATEINVALID is returned when
• the subcommand in Byte 0 of lpbMsg for Execute Command WFS_CMD_PIN_SECURE_MSG_SEND with

protocol WFS_PIN_PROTGENAS is 03 (Generate MAC) without a preceding GetMACRandom
(WFS_CMD_PIN_SECURE_MSG_SEND with subcommand 02).

The error code WFS_ERR_PIN_MACINVALID is returned when
• the subcommand in Byte 0 of lpbMsg for Execute Command WFS_CMD_PIN_SECURE_MSG_RECEIVE

with protocol WFS_PIN_PROTGENAS is 04 (Verify MAC) and the MACs didn’t match.

The error code WFS_ERR_PIN_KEYNOTFOUND is returned when
• the subcommand in Byte 0 of lpbMsg for Execute Command WFS_CMD_PIN_SECURE_MSG_SEND with

protocol WFS_PIN_PROTGENAS is 01 (Generate PAC) and the service provider doesn’t find a master key.
• the subcommand in Byte 0 of lpbMsg for Execute Command WFS_CMD_PIN_SECURE_MSG_SEND with

protocol WFS_PIN_PROTGENAS is 02 (Get MAC Random) and the service provider doesn’t find a master
key.

• the subcommand in Byte 0 of lpbMsg for Execute Command WFS_CMD_PIN_SECURE_MSG_RECEIVE
with protocol WFS_PIN_PROTGENAS is 04 (Verify MAC) and the service provider doesn’t find a key for the
provided key generation and key version values.

The error code WFS_ERR_PIN_NOPIN is returned when
the subcommand in Byte 0 of lpbMsg for Execute Command WFS_CMD_PIN_SECURE_MSG_SEND with
protocol WFS_PIN_PROTGENAS is 01 (Generate PAC) and no PIN or insufficient PIN-digits have been entered.

Page 8
CWA 14050-42: 2005

3.2 Secure Key Entry
This section provides additional information to describe how encryption keys are entered securely through the
pinpad keyboard and also provides examples of possible keyboard layouts.

3.2.1 Keyboard Layout
The following sections describe what is returned within the WFS_INF_PIN_SECUREKEY_DETAIL output
parameters to describe the physical keyboard layout. These descriptions are purely examples to help understand the
usage of the parameters they do not indicate a specific layout per Key Entry Mode.

In the following section all references to parameters relate to the output fields of the
WFS_INF_PIN_SECUREKEY_DETAIL command.

When fwKeyEntryMode represents a regular shaped pin pad (WFS_PIN_SECUREKEY_REG_UNIQUE or
WFS_PIN_SECUREKEY_REG_SHIFT) then lppHexKeys must contain one entry for each physical key on the
pinpad (i.e. the product of wRows by wColumns). On a regular shaped pinpad the application can choose to ignore
the position and size data and just use the wRows and wColumns parameters to define the layout. However, a service
provider must return the position and size data for each key.

Page 9
CWA 14050-42: 2005

3.2.1.1 fwKeyEntryMode == WFS_PIN_SECUREKEY_REG_UNIQUE

When fwKeyEntryMode is WFS_PIN_SECUREKEY_REG_UNIQUE then the values in the array report which
physical keys are associated with the function keys 0-9, A-F and any other function keys that can be enabled as
defined in the lpFuncKeyDetail parameter. Any positions on the pinpad that are not used must be defined as a
WFS_PIN_FK_UNUSED in the ulFK and ulShiftFK field of the lppHexKeys structure.

1 2 3 Clear (A)
4 5 6 Cancel (B)
7 8 9 Enter (C)
(D) 0 (E) (F)

In the above example, where all keys are the same size and the hex digits are located as shown the lppHexKeys will
contain the entries in the array as defined in the following table.

Index usXPos usYPos usxSize usYSize ulFK ulShiftFK
0 0 0 250 250 FK_1 FK_UNUSED
1 250 0 250 250 FK_2 FK_UNUSED
2 500 0 250 250 FK_3 FK_UNUSED
3 750 0 250 250 FK_A FK_UNUSED
4 0 250 250 250 FK_4 FK_UNUSED
5 250 250 250 250 FK_5 FK_UNUSED
6 500 250 250 250 FK_6 FK_UNUSED
7 750 250 250 250 FK_B FK_UNUSED
8 0 500 250 250 FK_7 FK_UNUSED
9 250 500 250 250 FK_8 FK_UNUSED
10 500 500 250 250 FK_9 FK_UNUSED
11 750 500 250 250 FK_C FK_UNUSED
12 0 750 250 250 FK_D FK_UNUSED
13 250 750 250 250 FK_0 FK_UNUSED
14 500 750 250 250 FK_E FK_UNUSED
15 750 750 250 250 FK_F FK_UNUSED

Page 10
CWA 14050-42: 2005

3.2.1.2 fwKeyEntryMode == WFS_PIN_SECUREKEY_REG_SHIFT

When fwKeyEntryMode is WFS_PIN_SECUREKEY_REG_SHIFT then the values in the array report which
physical keys are associated with the function keys 0-9, A-F and the shift key as defined in the lpFuncKeyDetail
parameter. Other function keys as defined by the lpFuncKeyDetail parameter that can be enabled must also be
reported. Any positions on the pinpad that are not used must be defined as a WFS_PIN_FK_UNUSED in the ulFK
and ulShiftFK field of the lppHexKeys structure. Digits 0 to 9 are accessed through the numeric keys as usual. Digits
A - F are accessed by using the shift key in combination with another function key, e.g. shift-0(zero) is hex digit A.

1 (B) 2 (C) 3 (D) Clear
4 (E) 5 (F) 6 Cancel
7 8 9 Enter
SHIFT 0 (A)

In the above example, where all keys are the same size and the hex digits 'A' to 'F' are accessed through shift '0' to '5',
then the lppHexKeys will contain the entries in the array as defined in the following table.

Index usXPos usYPos usxSize usYSize ulFK ulShiftFK
0 0 0 250 250 FK_1 FK_B
1 250 0 250 250 FK_2 FK_C
2 500 0 250 250 FK_3 FK_D
3 750 0 250 250 FK_CLEAR FK_UNUSED
4 0 250 250 250 FK_4 FK_E
5 250 250 250 250 FK_5 FK_F
6 500 250 250 250 FK_6 FK_UNUSED
7 750 250 250 250 FK_CANCEL FK_UNUSED
8 0 500 250 250 FK_7 FK_UNUSED
9 250 500 250 250 FK_8 FK_UNUSED
10 500 500 250 250 FK_9 FK_UNUSED
11 750 500 250 250 FK_ENTER FK_UNUSED
12 0 750 250 250 FK_SHIFT FK_UNUSED
13 250 750 250 250 FK_0 FK_A
14 500 750 250 250 FK_UNUSED FK_UNUSED
15 750 750 250 250 FK_UNUSED FK_UNUSED

Page 11
CWA 14050-42: 2005

3.2.1.3 fwKeyEntryMode == WFS_PIN_SECUREKEY_IRREG_SHIFT

When fwKeyEntryMode represents an irregular shaped pin pad the wRows and wColumns parameters define the
ratio of the width to height, i.e. square if the parameters are the same or rectangular if wColumns is larger than
wRows, etc. A service provider must return the position and size data for each key reported.

When fwKeyEntryMode is WFS_PIN_SECUREKEY_IRREG_SHIFT then the values in the array must be the
function keys codes for 0-9 and the shift key as defined in the lpFuncKeyDetail parameter. Other function keys as
defined by the lpFuncKeyDetail parameter that can be enabled must also be reported. Any positions on the pinpad
that are not used must be defined as a WFS_PIN_FK_UNUSED in the ulFK and ulShiftFK field of the lppHexKeys
structure. Digits 0 to 9 are accessed through the numeric keys as usual. Digits A - F are accessed by using the shift
key in combination with another function key,e.g. shift-0(zero) is hex digit A.

1 (B) 2 (C) 3 (D) Clear
4 (E) 5 (F) 6 Cancel
7 8 9 Enter
 0 (A)

SHIFT

In the above example, where the hex digits 'A' to 'F' are accessed through shift '0' to '5' , wColumns will be 4, wRows
will be 5 and the lppHexKeys will contain the entries in the array as defined in the following table.

Index usXPos usYPos usxSize usYSize ulFK ulShiftFK
0 0 0 250 200 FK_1 FK_B
1 250 0 250 200 FK_2 FK_C
2 500 0 250 200 FK_3 FK_D
3 750 0 250 200 FK_CLEAR FK_UNUSED
4 0 200 250 200 FK_4 FK_E
5 250 200 250 200 FK_5 FK_F
6 500 200 250 200 FK_6 FK_UNUSED
7 750 200 250 200 FK_CANCEL FK_UNUSED
8 0 400 250 200 FK_7 FK_UNUSED
9 250 400 250 200 FK_8 FK_UNUSED
10 500 400 250 200 FK_9 FK_UNUSED
11 750 400 250 200 FK_ENTER FK_UNUSED
12 0 600 250 200 FK_UNUSED FK_UNUSED
13 250 600 250 200 FK_0 FK_A
14 500 600 250 200 FK_UNUSED FK_UNUSED
15 750 600 250 200 FK_UNUSED FK_UNUSED
16 0 800 1000 200 FK_SHIFT FK_UNUSED

Page 12
CWA 14050-42: 2005

3.2.1.4 fwKeyEntryMode == WFS_PIN_SECUREKEY_IRREG_UNIQUE

When fwKeyEntryMode is WFS_PIN_SECUREKEY_REG_UNIQUE then the values in the array report which
physical keys are associated with the function keys 0-9, A-F and any other function keys that can be enabled as
defined in the lpFuncKeyDetail parameter. The wRows and wColumns parameters define the ratio of the width to
height, ie square if the parameters are the same or rectangular if if wColumns is larger than wRows, etc. A service
provider must return the position and size data for each key.

1 Q W E R T Y POIU

A S

Z

LKJHGFD

BVCX ,.MN

Space

(D) (E) (F)(C)

2

4

3

5 6

7 8 9

 0

0

Cancel

Enter

Clear

20

60

70

0

200
220

20

990

930

920

880

(A) (B)

780

Page 13
CWA 14050-42: 2005

In the above example, where an alphanumeric keyboard supports secure key entry and the hex digits are located as
shown, the lppHexKeys will contain the entries in the array as defined in the following table. All the hex digits and
function keys that can be enabled must be included in the array; in addition any keys that would help an application
display an image of the keyboard can be included. In this example only the pinpad digits(the keys on the right) and
the unique hex digits are reported. Note that the position data in this example may not be 100% accurate as the
diagram is not to scale.

Index usXPos usYPos usxSize usYSize ulFK ulShiftFK
0 780 18 40 180 FK_1 FK_UNUSED
1 830 18 40 180 FK_2 FK_UNUSED
2 880 18 40 180 FK_3 FK_UNUSED
3 930 18 60 180 FK_CANCEL FK_UNUSED
4 780 216 40 180 FK_4 FK_UNUSED
5 830 216 40 180 FK_5 FK_UNUSED
6 880 216 40 180 FK_6 FK_UNUSED
7 930 216 60 180 FK_ENTER FK_UNUSED
8 780 414 40 180 FK_7 FK_UNUSED
9 830 414 40 180 FK_8 FK_UNUSED
10 880 414 40 180 FK_9 FK_UNUSED
11 930 414 60 180 FK_CLEAR FK_UNUSED
12 780 612 40 180 FK_UNUSED FK_UNUSED
13 830 612 40 180 FK_0 FK_UNUSED
14 880 612 40 180 FK_UNUSED FK_UNUSED
15 930 612 60 180 FK_UNUSED FK_UNUSED
16 680 810 40 180 FK_A FK_UNUSED
17 730 810 40 180 FK_B FK_UNUSED
18 780 810 40 180 FK_C FK_UNUSED
19 830 810 40 180 FK_D FK_UNUSED
20 880 810 40 180 FK_E FK_UNUSED
21 930 810 60 180 FK_F FK_UNUSED

Page 14
CWA 14050-42: 2005

3.2.2 Command Usage
This section provides an example of the sequence of commands required to enter an encryption key securely. In the
following sequence, the application retrieves the keyboard secure key entry mode and associated keyboard layout
and displays an image of the keyboard for the user. It then gets the first key part, verifies the KCV for the key part
and stores it. The sequence is repeated for the second key part and then finally the key part is activated.

Application
PIN

WFS_INF_PIN_SECUREKEY_DETAIL

Display Keyboard Layout

WFS_CMD_PIN_SECUREKEY_ENTRY (Part 1)

Verify KCV (part 1)

WFS_CMD_PIN_IMPORT_KEY (Part 1)

WFS_CMD_PIN_SECUREKEY_ENTRY (Part 2)

Verify KCV (part 2)

WFS_CMD_PIN_IMPORT_KEY (Part 2)

WFS_CMD_PIN_IMPORT_KEY (Activate)

Verify KCV (Full key)

Page 15
CWA 14050-42: 2005

4. New Info Commands

4.1 WFS_INF_PIN_SECUREKEY_DETAIL

Description This command reports the secure key entry method used by the device. This allows an application
to enable the relevant keys and inform the user how to enter the hex digits 'A' to 'F', e.g by
displaying an image indicating which key pad locations correspond to the 16 hex digits and/or
shift key. It reports the following information:

• The secure key entry mode (uses a shift key to access the hex digit 'A' to 'F' or each hex
digit has a specific key assigned to it).

• The function keys and FDKs available during secure key entry
• The FDKs that are configured as function keys (Enter, Cancel, Clear and Backspace)
• The physical keyboard layout

The keys that are active during the secure key entry command are vendor specific but must be
sufficient to enter a secure encryption key. On some systems a unique key is assigned to each
encryption key digit. On some systems encryption key digits are entered by pressing a shift key
and then a numeric digit, e.g. to enter 'A' the shift key (WFS_PIN_FK_SHIFT) is pressed
followed by the zero key (WFS_PIN_FK_0). On these systems WFS_PIN_FK_SHIFT is not
returned to the application in a WFS_EXEE_PIN_KEY event. The exact behavior of the shift key
is vendor dependent, some devices will require the shift to be used before every key and some
may require the shift key to enter and exit shift mode.

There are many different styles of pinpads in operation. Most have a regular shape with all keys
having the same size and are laid out in a regular matrix. However, some devices have a layout
with keys of different sizes and different numbers of keys on some rows and columns. This
command returns information that allows an application to provide user instructions and an image
of the keyboard layout to assist with key entry.

Input Param None.

Output Param LPWFSPINSECUREKEYDETAIL lpSecureKeyDetail;

 typedef struct _wfs_pin_secure_key_detail
 {

WORD fwKeyEntryMode;
LPWFSPINFUNCKEYDETAIL lpFuncKeyDetail;

 ULONG ulClearFDK;
ULONG ulCancelFDK;
ULONG ulBackspaceFDK;
ULONG ulEnterFDK;
WORD wColumns;
WORD wRows;
LPWFSPINHEXKEYS * lppHexKeys;

 } WFSPINSECUREKEYDETAIL, * LPWFSPINSECUREKEYDETAIL;

fwKeyEntryMode
Specifies the method to be used to enter the encryption key digits (including 'A' to 'F') during
secure key entry. The value can be one of the following.

Value Meaning
WFS_PIN_SECUREKEY_NOTSUPP Secure key entry is not supported, all other

parameters are undefined.
WFS_PIN_SECUREKEY_REG_SHIFT Secure key hex digits 'A' – 'F' are accessed

through the shift key. Digits 'A' – 'F' are
accessed through the shift key followed by
one of the other function keys. The keys
associated with 'A' to 'F' are defined within

Page 16
CWA 14050-42: 2005

the lppHexKeys parameter. The keyboard
has a regular shaped key layout where all
rows have the same number of keys and all
columns have the same number of keys,
e.g. 5x4. The lppHexKeys parameter must
contain one entry for each key on the
pinpad (i.e. the product of wRows by
wColumns).

WFS_PIN_SECUREKEY_IRREG_SHIFT Secure key hex digits 'A' – 'F' are accessed
through the shift key. Digits 'A' – 'F' are
accessed through the shift key followed by
one of the other function keys. The keys
associated with 'A' to 'F' are defined within
the lppHexKeys parameter. The keyboard
has an irregular shaped key layout, e.g
there are more or less keys on one row or
column than on the others. The lppHexKeys
parameter must contain one entry for each
key on the pinpad.

WFS_PIN_SECUREKEY_REG_UNIQUE Secure key hex digits are accessed through
specific keys assigned to each hex digit.
The keyboard has a regular shaped key
layout where all rows have the same
number of keys and all columns have the
same number of keys, e.g. 5x4. The
lppHexKeys parameter must contain one
entry for each key on the pinpad (i.e. the
product of wRows by wColumns).

WFS_PIN_SECUREKEY_IRREG_UNIQUE Secure key hex digits are accessed through
specific keys assigned to each hex digit.
The keyboard has an irregular shaped key
layout, e.g. there are more or less keys on
one row or column than on the others. The
lppHexKeys must contain one entry for
each key on the pinpad.

lpFuncKeyDetail
 Contains information about the Function Keys and FDKs supported by the device while in
secure key entry mode. This structure is the same as the output structure of the
WFS_INF_PIN_FUNCKEY_DETAIL command with information always returned for every
FDK valid during secure key entry. It describes the function keys that represent the hex digits
and shift key, but also reports any other keys that can be enabled while in secure key entry
mode.

 The double zero, triple zero and decimal point function keys are not valid during secure key
entry so are never reported.

 On a pinpad where the physical Enter, Clear, Cancel and Backspace keys are used for hex
digits (e.g WFS_PIN_SECUREKEY_REG_UNIQUE mode), the logical function keys
WFS_PIN_FK_ENTER, WFS_PIN_FK_CLEAR, WFS_PIN_FK_CANCEL and
WFS_PIN_FK_BACKSPACE will not be reported by this command (unless there is another
physical key offering this functionality).

 In addition to the existing definition for WFS_INF_PIN_FUNCKEY_DETAIL, the following
definitions replace function keys WFS_PIN_FK_RES1 to WFS_PIN_FK_RES7:

WFS_PIN_FK_A (hex digit A)
WFS_PIN_FK_B (hex digit B)
WFS_PIN_FK_C (hex digit C)
WFS_PIN_FK_D (hex digit D)
WFS_PIN_FK_E (hex digit E)
WFS_PIN_FK_F (hex digit F)

Page 17
CWA 14050-42: 2005

WFS_PIN_FK_SHIFT (Shift key used during hex entry)

ulClearFDK
The FDK code mask reporting any FDKs associated with Clear. If this field is 0 then Clear
through an FDK is not supported, otherwise the bit mask reports which FDKs are associated
with Clear.

ulCancelFDK
The FDK code mask reporting any FDKs associated with Cancel. If this field is 0 then Cancel
through an FDK is not supported, otherwise the bit mask reports which FDKs are associated
with Cancel.

ulBackspaceFDK
The FDK code mask reporting any FDKs associated with Backspace. If this field is 0 then
Backspace through an FDK is not supported, otherwise the bit mask reports which FDKs are
associated with Backspace.

ulEnterFDK
The FDK code mask reporting any FDKs associated with Enter. If this field is 0 then Enter
through an FDK is not supported, otherwise the bit mask reports which FDKs are associated
with Enter.

wColumns
Specifies the maximum number of columns on the pinpad (the columns are defined by the x co-
ordinate values within the lppHexKeys structure below). When the fwKeyEntryMode parameter
represents an irregular shaped keyboard the wRows and wColumns parameters define the ratio
of the width to height, i.e.square if the parameters are the same or rectangular if wColumns is
larger than wRows, etc.

wRows
Specifies the maximum number of rows on the pinpad(the rows are defined by the y co-ordinate
values within the lppHexKeys structure below). When the fwKeyEntryMode parameter
represents an irregular shaped keyboard the wRows and wColumns parameters define the ratio
of the width to height, ie square if the parameters are the same or rectangular if wColumns is
larger than wRows, etc.

lppHexKeys
A NULL terminated array of pointers to key layout structures describing the physical keys on
the pinpad, it does not include FDKs.
typedef struct _wfs_pin_hex_keys
 {
 USHORT usXPos;
 USHORT usYPos;
 USHORT usXSize;
 USHORT usYSize;
 ULONG ulFK;
 ULONG ulShiftFK;
 } WFSPINHEXKEYS, * LPWFSPINHEXKEYS;

This array defines the keys associated with the hex digits. Each structure entry describes the
position, size and function key associated with a key. This data must be returned by the service
provider. This array represents the pinpad keys ordered left to right and top to bottom.

usXPos
Specifies the position of the top left corner of the FK relative to the left hand side of the
keyboard expressed as a value between 0 and 999, where 0 is the left edge and 999 is the right
edge.

usYPos
Specifies the position of the top left corner of the FK relative to the top of the keyboard
expressed as a value between 0 and 999, where 0 is the top edge and 999 is the bottom edge.

usXSize
Specifies the FK width expressed as a value between 1 and 1000, where 1 is the smallest
possible size and 1000 is the full width of the keyboard.

Page 18
CWA 14050-42: 2005

usYSize
Specifies the FK height as expressed as a value between 1and 1000, where 1 is the smallest
possible size and 1000 is the full height of the keyboard,

ulFK
Specifies the FK code associated with the physical key in non shifted mode,
WFS_PIN_FK_UNUSED if the key is not used.

ulShiftFK
Specifies the FK code associated with the physical key in shifted mode,
WFS_PIN_FK_UNUSED if the key is not used in shifted mode. This field will always be
WFS_PIN_FK_UNUSED when the fwKeyEntryMode parameter indicates that keyboard does
not use a shift mode.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Examples keyboard layouts are provided in section 3.2 to explain the use of the lppHexKeys
parameter. In addition section 3.2 also provides an example of a command flow required to enter
encryption keys securely.

Page 19
CWA 14050-42: 2005

5. Changes to Existing Info Commands

5.1 WFS_INF_PIN_KEY_DETAIL

Description This command returns detailed information about the keys in the encryption module. This
command will also return information on symmetric keys loaded during manufacture that can be
used by applications. If a public or private key name is specifed this command will return
WFS_ERR_PIN_KEYNOTFOUND. If the application wants all keys returned, then all keys
except the public or private keys are returned.

Input Param LPSTR lpsKeyName;

lpsKeyName
Name of the key for which detailed information is requested.
If NULL, detailed information about all the keys in the encryption module is returned.

Output Param LPWFSPINKEYDETAIL * lppKeyDetail;

 Pointer to a null-terminated array of pointers to key detail structures.
typedef struct _wfs_pin_key_detail
 {
 LPSTR lpsKeyName;
 WORD fwUse;
 BOOL bLoaded;
 } WFSPINKEYDETAIL, * LPWFSPINKEYDETAIL;

 lpsKeyName
Specifies the name of the key.

 fwUse
Specifies the type of access for which the key is used as a combination of the following flags:

Value Meaning
WFS_PIN_USECRYPT key can be used for encryption/decryption
WFS_PIN_USEFUNCTION key can be used for PIN functions
WFS_PIN_USEMACING key can be used for MACing
WFS_PIN_USEKEYENCKEY key is used as key encryption key
WFS_PIN_USENODUPLICATE key can be imported only once
WFS_PIN_USESVENCKEY key is used as CBC Start Value encryption key
WFS_PIN_USECONSTRUCT key is under construction through the import of

multiple parts. This value can be returned in
combination with any of the other key usage flags
(other than
WFS_PIN_USESECURECONSTRUCT).

WFS_PIN_USESECURECONSTRUCT key is under construction through the import of
multiple parts from a secure encryption key entry
buffer. This value can be returned in combination
with any of the other key usage flags (other than
WFS_PIN_USECONSTRUCT).

 bLoaded
Specifies whether the key has been loaded (imported from Application or locally from
Operator) and is either TRUE or FALSE.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key name is not found.

Comments None.

Page 20
CWA 14050-42: 2005

5.2 WFS_INF_PIN_KEY_DETAIL_EX

Description This command returns extended detailed information about the keys in the encryption module,
including DES, private and public keys. Information like generation, version, activating and
expiry date can be returned only for keys which are loaded via the
WFS_CMD_PIN_SECURE_MSG_SEND command with WFS_PIN_PROTISOPS or a vendor
dependant mechanism. This command will also return information on all keys loaded during
manufacture that can be used by applications.

Input Param LPSTR lpsKeyName;

lpsKeyName
Name of the key for which detailed information is requested.
If NULL, detailed information about all the keys in the encryption module is returned.

Output Param LPWFSPINKEYDETAILEX * lppKeyDetailEx;

 Pointer to a null-terminated array of pointers to key detail structures.
typedef struct _wfs_pin_key_detail_ex
 {
 LPSTR lpsKeyName;
 DWORD dwUse;
 BYTE bGeneration;
 BYTE bVersion;
 BYTE bActivatingDate[4];
 BYTE bExpiryDate[4];
 BOOL bLoaded;
 } WFSPINKEYDETAILEX, * LPWFSPINKEYDETAILEX;

 lpsKeyName
Specifies the name of the key.

 dwUse
Specifies the type of access for which the key is used as a combination of the following flags:

Value Meaning
WFS_PIN_USECRYPT key can be used for encryption/decryption
WFS_PIN_USEFUNCTION key can be used for PIN functions
WFS_PIN_USEMACING key can be used for MACing
WFS_PIN_USEKEYENCKEY key is used as key encryption key
WFS_PIN_USENODUPLICATE key can be imported only once
WFS_PIN_USESVENCKEY key is used as CBC Start Value encryption key
WFS_PIN_USEPINLOCAL key is used for local PIN check
WFS_PIN_USERSAPUBLIC key is used as a public key for RSA encryption

including EMV PIN block creation
WFS_PIN_USERSAPRIVATE key is used as a private key for RSA decryption.
WFS_PIN_USERSAPRIVATESIGN key is used as a private key for RSA Signature

generation. Only data generated within the
device can be signed.

WFS_PIN_USECHIPINFO key is used as KGKINFO key (only ZKA
standard)

WFS_PIN_USECHIPPIN key is used as KGKPIN key (only ZKA standard)
WFS_PIN_USECHIPPS key is used as KPS key (only ZKA standard)
WFS_PIN_USECHIPMAC key is used as KMAC key (only ZKA standard)
WFS_PIN_USECHIPLT key is used as KGKLT key (only ZKA standard)
WFS_PIN_USECHIPMACLZ key is used as KPACMAC key (only ZKA standard)
WFS_PIN_USECHIPMACAZ key is used as KMASTER key (only ZKA standard)
WFS_PIN_USERSAPUBLICVERIFY key is used as a public key for RSA signature

verification and/or data decryption.

Page 21
CWA 14050-42: 2005

WFS_PIN_USECONSTRUCT key is under construction through the import of

multiple parts. This value can be returned in
combination with any one of the other key usage
flags (other than
WFS_PIN_USESECURECONSTRUCT).

WFS_PIN_USESECURECONSTRUCT key is under construction through the import of
multiple parts from a secure encryption key entry
buffer. This value can be returned in
combination with any of the other key usage
flags (other than
WFS_PIN_USECONSTRUCT).

 bGeneration
Specifies the generation of the key as BCD value. Will be 0xff if no such information is
available for the key.

 bVersion
Specifies the version of the key as BCD value. Will be 0xff if no such information is available
for the key.

 bActivatingDate
Specifies the date when the key is activated as BCD value in the format YYYYMMDD. Will be
0xffffffff if no such information is available for the key.

 bExpiryDate
Specifies the date when the key expires as BCD value in the format YYYYMMDD. Will be
0xffffffff if no such information is available for the key.

 bLoaded
Specifies whether the key has been loaded (imported from Application or locally from
Operator) and is either TRUE or FALSE.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key name is not found.

Comments When the PIN contains a public/private key-pair, only the private part of the key will be reported.
Every private key in the PIN will always have a corresponding public key with the same name.
The public key can be exported with WFS_CMD_PIN_EXPORT_EPP_SIGNED_ITEM.

6. New Execute Commands

6.1 Normal PIN Commands
The following commands are those commands that are used in a normal transaction with the encryptor.

6.1.1 WFS_CMD_PIN_SECUREKEY_ENTRY

Description This command allows a full length symmetric encryption key part to be entered directly into the
pinpad without being exposed outside of the pinpad. From the point this function is invoked,
encryption key digits (WFS_PIN_FK_0 to WFS_PIN_FK_9 and WFS_PIN_FK_A to
WFS_PIN_FK_F) are not passed to the application. For each encryption key digit, or any other
active key entered(except for shift), an execute notification event WFS_EXEE_PIN_KEY is sent
in order to allow an application to perform the appropriate display action (i.e. when the pinpad has
no integrated display). When an encryption key digit is entered the application is not informed of
the value entered, instead zero is returned.

The keys that can be enabled by this command are defined by the lpFuncKeyDetail parameter of
the WFS_INF_PIN_SECUREKEY_DETAIL command. Function keys which are not associated
with an encryption key digit may be enabled but will not contribute to the secure entry buffer

Page 22
CWA 14050-42: 2005

(unless they are Cancel, Clear or Backspace) and will not count towards the length of the key
entry. The Cancel and Clear keys will cause the encryption key buffer to be cleared. The
Backspace key will cause the last encryption key digit in the encryption key buffer to be removed.

If bAutoEnd is TRUE the command will automatically complete when the required number of
encryption key digits have been added to the buffer.
If bAutoEnd is FALSE then the command will not automatically complete and Enter, Cancel or
any terminating key must be pressed. When usKeyLen hex encryption key digits have been entered
then all encryption key digits keys are disabled. If the Clear or Backspace key is pressed to reduce
the number of entered encryption key digits below usKeyLen , the same keys will be re-enabled.

Terminating keys have to be active keys to operate.

If an FDK is associated with Enter, Cancel, Clear or Backspace then the FDK must be activated to
operate. The Enter and Cancel FDKs must also be marked as a terminator if they are to terminate
entry. These FDKs are reported as normal FDKs within the WFS_EXEE_PIN_KEY event,
applications must be aware of those FDKs associated with Cancel, Clear, Backspace and Enter
and handle any user interaction as required. For example, if the WFS_PIN_FK_FDK01 is
associated with Clear, then the application must include the WFS_PIN_FK_FDK01 FDK code in
the ulActiveFDK parameter (if the clear functionality is required). In addition when this FDK is
pressed the WFS_EXEE_PIN_KEY event will contain the WFS_PIN_FK_FDK01 mask value in
the ulDigit field. The application must update the user interface to reflect the effect of the clear on
the encryption key digits entered so far.

On some devices that are configured as either WFS_PIN_SECUREKEY_REG_UNIQUE or
WFS_PIN_SECUREKEY_IRREG_UNIQUE all the function keys on the pinpad will be
associated with hex digits and there may be no FDKs available either. On these devices there may
be no way to correct mistakes or cancel the key encryption entry before all the encryption key
digits are entered, so the application must set the bAutoEnd flag to TRUE and wait for the
command to auto-complete. Applications should check the KCV to avoid storing an incorrect key
component.

Encryption key parts entered with this command are stored through either the
WFS_CMD_PIN_IMPORT_KEY or WFS_CMD_PIN_IMPORT_KEY_EX. Each key part can
only be stored once after which the secure key buffer will be cleared automatically.

Input Param LPWFSPINSECUREKEYENTRY lpSecureKeyEntry;

typedef struct _wfs_pin_secure_key_entry
 {

USHORT usKeyLen;
BOOL bAutoEnd;
ULONG ulActiveFDKs;
ULONG ulActiveKeys;
ULONG ulTerminateFDKs;
ULONG ulTerminateKeys;
WORD wVerificationType;

 } WFSPINSECUREKEYENTRY, * LPWFSPINSECUREKEYENTRY;

usKeyLen
Specifies the number of digits which must be entered for the encryption key, 16 for a single
length key and 32 for a double length key. The only valid values are 16 and 32.

bAutoEnd
If bAutoEnd is set to true, the service provider terminates the command when the maximum
number of encryption key digits are entered. Otherwise, the input is terminated by the user
using Enter, Cancel or any terminating key. When usKeyLen is reached, the service provider
will disable all keys associated with an encryption key digit.

ulActiveFDKs

Specifies those FDKs which are active during the execution of the command. This parameter
should include those FDKs mapped to edit functions.

Page 23
CWA 14050-42: 2005

ulActiveKeys

Specifies all Function Keys(not FDKs) which are active during the execution of the
command. This should be the complete set or a subset of the keys returned in the
lpFuncKeyDetail parameter of the WFS_INF_PIN_SECUREKEY_DETAIL command. This
should include WFS_PIN_FK_0 to WFS_PIN_FK_9 and WFS_PIN_FK_A to
WFS_PIN_FK_F for all modes of secure key entry, but should also include
WFS_PIN_FK_SHIFT on shift based systems. The WFS_PIN_FK_00, WFS_PIN_FK_000
and WFS_PIN_FK_DECPOINT function keys must not be included in the list of active or
terminate keys.

ulTerminateFDKs

Specifies those FDKs which must terminate the execution of the command. This should
include the FDKs associated with Cancel and Enter.

ulTerminateKeys

Specifies those all Function Keys(not FDKs) which must terminate the execution of the
command. This does not include the FDKs associated with Enter or Cancel.

wVerificationType

Specifies the type of verification to be done on the entered key. Possible values are as follows
Value Meaning
WFS_PIN_KCVSELF The key check value is created by an encryption of

the key with itself.
WFS_PIN_KCVZERO The key check value is created by an encryption of a

zero value with the key.

Output Param LPWFSPINSECUREKEYENTRYOUT lpSecureKeyEntryOut;

typedef struct _wfs_pin_secure_key_entry_out
 {
 USHORT usDigits;
 WORD wCompletion;
 LPWFSXDATA lpxKCV;
 } WFSPINSECUREKEYENTRYOUT, * LPWFSPINSECUREKEYENTRYOUT;

 usDigits
Specifies the number of key digits entered. Applications must ensure all required digits have
been entered before trying to store the key.

 wCompletion

Specifies the reason for completion of the entry. Possible values are described in
WFS_CMD_PIN_GET_PIN.

 lpxKCV

Contains the key check value data that can be used for verification of the entered key. This
parameter is NULL if device does not have this capability, or the key entry was not fully entered,
e.g. the entry was terminated by Enter before the required number of digits was entered.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_KEYINVALID At least one of the specified function keys or

FDKs is invalid.
WFS_ERR_PIN_KEYNOTSUPPORTED At least one of the specified function keys or FDKs

is not supported by the service provider.
WFS_ERR_PIN_NOACTIVEKEYS There are no active function keys specified.
WFS_ERR_PIN_NOTERMINATEKEYS There are no terminate keys specified and

bAutoEnd is FALSE.
WFS_ERR_PIN_INVALIDKEYLENGTH The usKeyLen key length is not supported.

Page 24
CWA 14050-42: 2005

WFS_ERR_PIN_MODENOTSUPPORTED The KCV mode is not supported.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_PIN_KEY A key has been pressed at the pinpad.

Applications must be aware of the association
between FDKs and the edit functions reported
within the
WFS_INF_PIN_SECUREKEY_DETAIL
command.

Comments None

6.1.2 WFS_CMD_PIN_GENERATE_KCV

Description This command returns the Key Check Value (KCV) for the specified key.

Input Param LPWFSPINGENERATEKCV lpGenerateKCV;

typedef struct _wfs_pin_generate_KCV
 {
 LPSTR lpsKey;
 WORD wKeyCheckMode;
 } WFSPINGENERATEKCV, * LPWFSPINGENERATEKCV;

 lpsKey
Specifies the name of key that should be used to generate the KCV.

wKeyCheckMode
Specifies the mode that is used to create the key check value. It can be one of the following
flags:

Value Meaning
WFS_PIN_KCVSELF The key check value is created by an encryption of the

key with itself.
WFS_PIN_KCVZERO The key check value is created by an encryption of a

zero value with this key.

Output Param LPWFSPINKCV lpKCV;

typedef struct _wfs_pin_kcv
 {
 LPWFSXDATA lpxKCV;
 } WFSPINKCV, * LPWFSPINKCV;

 lpxKCV

Contains the key check value data that can be used for verification of the key.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key encryption key was not found.
WFS_ERR_PIN_KEYNOVALUE The specified key exists but has no value loaded.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_MODENOTSUPPORTED The KCV mode is not supported.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Page 25
CWA 14050-42: 2005

Comments None.

Page 26
CWA 14050-42: 2005

7. Changes to Existing Execute Commands

7.1 Normal PIN Commands
The following commands are those commands that are used in a normal transaction with the encryptor.

7.1.1 WFS_CMD_PIN_IMPORT_KEY

Description The encryption key in the secure key buffer or passed by the application is loaded in the
encryption module. The key can be passed in clear text mode or encrypted with an accompanying
“key encryption key”.

 A key can be loaded in multiple unencrypted parts by combining the
WFS_PIN_USECONSTRUCT or WFS_PIN_USESECURECONSTRUCT value with the final
usage flags within the fwUse field. If the WFS_PIN_USECONSTRUCT flag is used then the
application must provide the key data through the lpxValue parameter, If
WFS_PIN_USESECURECONSTRUCT is used then the encryption key part in the secure key
buffer previously populated with the WFS_CMD_PIN_SECUREKEY_ENTRY command is used
and lpxValue is ignored. Key parts loaded with the WFS_PIN_USESECURECONSTRUCT flag
can only be stored once as the encryption key in the secure key buffer is no longer available after
this command has been executed. The WFS_PIN_USECONSTRUCT and
WFS_PIN_USESECURECONSTRUCT construction flags cannot be used in combination.

Input Param LPWFSPINIMPORT lpImport;

typedef struct _wfs_pin_import
 {
 LPSTR lpsKey;
 LPSTR lpsEncKey;
 LPWFSXDATA lpxIdent;
 LPWFSXDATA lpxValue;
 WORD fwUse;
 } WFSPINIMPORT, * LPWFSPINIMPORT;

 lpsKey
Specifies the name of key being loaded.

lpsEncKey
lpsEncKey specifies a key name or a format name which were used to encrypt the key passed in
lpxValue. If lpsEncKey is NULL the key is loaded directly into the encryption module.
lpsEncKey must be NULL if fwUse contains WFS_PIN_USECONSTRUCT or
WFS_PIN_USESECURECONSTRUCT.

 lpxIdent
Specifies the key owner identification. The use of this parameter is vendor dependent.

 lpxValue
Specifies the value of key to be loaded.

 fwUse
Specifies the type of access for which the key can be used as a combination of the following
flags:

Value Meaning
WFS_PIN_USECRYPT key can be used for encryption/decryption
WFS_PIN_USEFUNCTION key can be used for PIN functions
WFS_PIN_USEMACING key can be used for MACing
WFS_PIN_USEKEYENCKEY key is used as key encryption key
WFS_PIN_USENODUPLICATE key can be imported only once
WFS_PIN_USESVENCKEY key is used as CBC Start Value encryption key
WFS_PIN_USECONSTRUCT key is under construction through the import of

multiple parts. This value is used in

Page 27
CWA 14050-42: 2005

combination with the actual usage flags for the
key.

WFS_PIN_USESECURECONSTRUCT key is under construction through the import of
multiple parts. This value is used in combination
with the actual usage flags for the key. lpxValue
is ignored as the encryption key part is taken
from the secure key buffer.

If fwUse equals zero the specified key is deleted. In that case all parameters but lpsKey are
ignored.

Output Param LPWFSXDATA lpxKVC;

 lpxKVC
Contains the key verification code data that can be used for verification of the loaded key,
NULL if device does not have that capability.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key encryption key was not found.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_INVALIDID The ID passed was not valid.
WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be

overwritten.
WFS_ERR_PIN_KEYNOVALUE The specified key encryption key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxValue is not supported or the

encryption key in the secure key buffer is invalid
(or has not been entered).

WFS_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a key
of the specified type.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments When keys are loaded in multiple parts, all parts of the key loaded must set the relevant
construction value in the fwUse field along with any usage’s needed for the final key use. The
usage flags must be consistent for all parts of the key. Activation of the key entered in multiple
parts is indicated through an additional final call to this command, where the construction flag is
removed from fwUse but those other usage’s defined during the key part loading must still be
used. No key data is passed during the final activation of the key. A
WFS_ERR_PIN_ACCESSDENIED error will be returned if the key cannot be activated, e.g. if
only one key part has been entered.

The optional KCV is only returned during the final activation step. Applications wishing to verify
the KCV for each key part (and passing keys as a parameter to this command) will need to load
each key part into a temporary location inside the encryptor. If the application determines the
KCV of the key part is valid, then the application calls the WFS_CMD_PIN_IMPORT_KEY
again to load the key part into the device. The application should delete the temporary key part as
soon as the KCV for that key part has been verified. It is not possible to verify a key part being
loaded from a secure key buffer with this command. This is achieved through the
WFS_CMD_PIN_SECUREKEY_ENTRY command.

When the first part of the key is received, it is stored directly in the device. All subsequent parts
are combined with the existing value in the device through XOR. No sub-parts of the key are
maintained separately. While a key still has a fwUse value that indicates it is under construction, it
cannot be used for cryptographic functions.

Page 28
CWA 14050-42: 2005

7.1.2 WFS_CMD_PIN_INITIALIZATION

Description The encryption module must be initialized before any encryption function can be used. Every call
to WFS_CMD_PIN_INITIALIZATION destroys all application keys that have been loaded or
imported, it does not affect those keys loaded during manufacturing or public keys imported under
the RSA Signature based remote key loading scheme when public key deletion authentication is
required. Usually this command is called by an operator task and not by the application program.

 Initialization also involves loading “initial” application keys and local vendor dependent keys.
These can be supplied, for example, by an operator through a keyboard, a local configuration file,
remote RSA key management or possibly by means of some secure hardware that can be attached
to the device. The application “initial” keys would normally get updated by the application during
a WFS_CMD_PIN_IMPORT_KEY command as soon as possible. Local vendor dependent static
keys (e.g. storage, firmware and offset keys) would normally be transparent to the application and
by definition can not be dynamically changed.

 Where initial keys are not available immediately when this command is issued (i.e. when operator
intervention is required), the Service Provider returns WFS_ERR_PIN_ACCESS_DENIED and
the application must await the WFS_SRVE_PIN_INITIALIZED event.

 During initialization an optional encrypted ID key can be stored in the HW module. The ID key
and the corresponding encryption key can be passed as parameters; if not, they are generated
automatically by the encryption module. The encrypted ID is returned to the application and
serves as authorization for the key import function. The WFS_INF_PIN_CAPABILITIES
command indicates whether or not the device will support this feature.

This function also resets the HSM terminal data, except session key index and trace number.

This function resets all certificate data and authentication public/private keys back to their initial
states at the time of production (except for those public keys imported under the RSA Signature
based remote key loading scheme when public key deletion authentication is required). Key-pairs
created with WFS_CMD_PIN_GENERATE_RSA_KEY_PAIR are deleted. Any keys installed
during production, which have been permanently replaced, will not be reset. Any Verification
certificates that may have been loaded must be reloaded. The Certificate state will remain the
same, but the WFS_CMD_PIN_LOAD_CERTIFICATE or
WFS_CMD_REPLACE_CERTIFICATE commands must be called again.

Input Param LPWFSPININIT lpInit;

typedef struct _wfs_pin_init
 {
 LPWFSXDATA lpxIdent;
 LPWFSXDATA lpxKey;
 } WFSPININIT, * LPWFSPININIT;

 lpxIdent
Pointer to the value of the ID key. Null if not required.

 lpxKey
Pointer to the value of the encryption key. Null if not required.

Output Param LPWFSXDATA lpxIdentification;

 lpxIdentification
Pointer to the value of the ID key encrypted by the encryption key. Can be used as authorization
for the WFS_CMD_PIN_IMPORT_KEY command, can be NULL if no authorization required.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized (or

not ready for some vendor specific reason).

Page 29
CWA 14050-42: 2005

WFS_ERR_PIN_INVALIDID The ID passed was not valid.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_INITIALIZED The encryption module is now initialized.
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

7.1.3 WFS_CMD_PIN_SECURE_MSG_SEND

Description This command handles all messages that should be send through a secure messaging to a
authorization system, German "Ladezentrale", personalization system or the chip. The encryption
module adds the security relevant fields to the message and returns the modified message in the
output structure. All messages must be presented to the encryptor via this command even if they
do not contain security fields in order to keep track of the transaction status in the internal state
machine.

Input Param LPWFSPINSECMSG lpSecMsgIn;

typedef struct _wfs_pin_secure_message
 {
 WORD wProtocol;
 ULONG ulLength;
 LPBYTE lpbMsg;
 } WFSPINSECMSG, * LPWFSPINSECMSG;

 wProtocol
Specifies the protocol the message belongs to. Specified as one of the following flags:

Value Meaning
WFS_PIN_PROTISOAS ISO 8583 protocol for the authorization system
WFS_PIN_PROTISOLZ ISO 8583 protocol for the German "Ladezentrale"
WFS_PIN_PROTISOPS ISO 8583 protocol for the personalization system
WFS_PIN_PROTCHIPZKA ZKA chip protocol
WFS_PIN_PROTRAWDATA raw data protocol
WFS_PIN_PROTPBM PBM protocol (see [Ref. 8] –[Ref. 13])
WFS_PIN_PROTHSMLDI HSM LDI protocol
WFS_PIN_PROTGENAS Generic PAC/MAC for non-ISO8583 message

formats

 ulLength
Specifies the length in bytes of the message in lpbMsg. This parameter is ignored for the
WFS_PIN_PROTHSMLDI protocol.

 lpbMsg
Specifies the message that should be send. This parameter is ignored for the
WFS_PIN_PROTHSMLDI protocol.

Output Param LPWFSPINSECMSG lpSecMsgOut;

 lpSecMsgOut
pointer to a WFSPINSECMSG structure that contains the modified message that can now be
send to a authorization system, German "Ladezentrale", personalization system or the chip.

Page 30
CWA 14050-42: 2005

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_HSMSTATEINVALID The HSM is not in a correct state to handle this

message.
WFS_ERR_PIN_PROTINVALID The specified protocol is invalid.
WFS_ERR_PIN_FORMATINVALID The format of the message is invalid.
WFS_ERR_PIN_CONTENTINVALID The contents of one of the security relevant fields

are invalid.
WFS_ERR_PIN_KEYNOTFOUND No key was found for PAC/MAC generation.
WFS_ERR_PIN_NOPIN No PIN or insufficient PIN-digits have been

entered.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

7.1.4 WFS_CMD_PIN_SECURE_MSG_RECEIVE

Description This command handles all messages that are received through a secure messaging from a
authorization system, German "Ladezentrale", personalization system or the chip. The encryption
module checks the security relevant fields. All messages must be presented to the encryptor via
this command even if they do not contain security relevant fields in order to keep track of the
transaction status in the internal state machine.

Input Param LPWFSPINSECMSG lpSecMsgIn;

typedef struct _wfs_pin_secure_message
 {
 WORD wProtocol;
 ULONG ulLength;
 LPBYTE lpbMsg;
 } WFSPINSECMSG, * LPWFSPINSECMSG;

 wProtocol
Specifies the protocol the message belongs to. Specified as one of the following flags:

Value Meaning
WFS_PIN_PROTISOAS ISO 8583 protocol for the authorization system
WFS_PIN_PROTISOLZ ISO 8583 protocol for the German "Ladezentrale"
WFS_PIN_PROTISOPS ISO 8583 protocol for the personalization system
WFS_PIN_PROTCHIPZKA ZKA chip protocol
WFS_PIN_PROTRAWDATA raw data protocol
WFS_PIN_PROTPBM PBM protocol (see [Ref. 8] –[Ref. 13])
WFS_PIN_PROTGENAS Generic PAC/MAC for non-ISO8583 message

formats

 ulLength
Specifies the length in bytes of the message in lpbMsg.

 lpbMsg
Specifies the message that was received. Can be NULL if during a specified time period no
response was received from the communication partner (necessary to set the internal state
machine to the correct state).

Output Param None.

Page 31
CWA 14050-42: 2005

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_HSMSTATEINVALID The HSM is not in a correct state to handle this

message.
WFS_ERR_PIN_MACINVALID The MAC of the message is not correct.
WFS_ERR_PIN_PROTINVALID The specified protocol is invalid.
WFS_ERR_PIN_FORMATINVALID The format of the message is invalid.
WFS_ERR_PIN_CONTENTINVALID The contents of one of the security relevant fields

are invalid.
WFS_ERR_PIN_KEYNOTFOUND No key was found for MAC verification.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_HSM_TDATA_CHANGED The terminal data has changed.

Comments None.

7.1.5 WFS_CMD_PIN_IMPORT_KEY_EX

Description The encryption key in the secure key buffer or passed by the application is loaded in the
encryption module. The key can be passed in clear text mode or encrypted with an accompanying
"key encryption key". The dwUse parameter is needed to separate the keys in several parts of the
encryption module to avoid the manipulation of a key.

A key can be loaded in multiple unencrypted parts by combining the
WFS_PIN_USECONSTRUCT or WFS_PIN_USESECURECONSTRUCT value with the final
usage flag within the dwUse field. If the WFS_PIN_USECONSTRUCT flag is used then the
application must provide the key data through the lpxValue parameter, If
WFS_PIN_USESECURECONSTRUCT is used then the encryption key part in the secure key
buffer previously populated with the WFS_CMD_PIN_SECUREKEY_ENTRY command is used
and lpxValue is ignored. Key parts loaded with the WFS_PIN_USESECURECONSTRUCT flag
can only be stored once as the encryption key in the secure key buffer is no longer available after
this command has been executed. The WFS_PIN_USECONSTRUCT and
WFS_PIN_USESECURECONSTRUCT construction flags cannot be used in combination.

Input Param LPWFSPINIMPORTKEYEX lpImportKeyEx;

typedef struct _wfs_pin_import_key_ex
 {
 LPSTR lpsKey;
 LPSTR lpsEncKey;
 LPWFSXDATA lpxValue;
 LPWFSXDATA lpxControlVector;
 DWORD dwUse;
 WORD wKeyCheckMode;
 LPWFSXDATA lpxKeyCheckValue;
 } WFSPINIMPORTKEYEX, * LPWFSPINIMPORTKEYEX;

lpsKey
Specifies the name of key being loaded.

Page 32
CWA 14050-42: 2005

lpsEncKey
lpsEncKey specifies a key name which was used to encrypt the key string passed in lpxValue. If
lpsEncKey is NULL the key is loaded directly into the encryption module. lpsEncKey must be
NULL if dwUse contains WFS_PIN_USECONSTRUCT or
WFS_PIN_USESECURECONSTRUCT.

lpxValue
Specifies the value of key to be loaded. If it is an RSA key the first 4 bytes contain the exponent
and the following 128 the modulus.

lpxControlVector
Specifies the control vector of the key to be loaded. It contains the attributes of the key. If this
parameter is NULL the keys is only specified by its use.

dwUse
Specifies the type of access for which the key can be used. If this parameter equals zero, the key
is deleted. Otherwise the parameter can be a combination of the following flags:

Value Meaning
WFS_PIN_USECRYPT key is used for encryption and decryption
WFS_PIN_USEFUNCTION key is used for PIN block creation
WFS_PIN_USEMACING key is used for MACing
WFS_PIN_USEKEYENCKEY key is used as key encryption key
WFS_PIN_USEPINLOCAL key is used for local PIN check
WFS_PIN_USERSAPUBLIC key is used as a public key for RSA encryption

including EMV PIN block creation
WFS_PIN_USERSAPRIVATE key is used as a private key for RSA decryption

(it is not recommend that private keys are
imported with this function).

WFS_PIN_USECONSTRUCT key is under construction through the import of
multiple parts. This value is used in combination
with one of the other key usage flags.

WFS_PIN_USESECURECONSTRUCT key is under construction through the import of
multiple parts. This value is used in combination
with one of the other key usage flags. lpxValue is
ignored as the encryption key part is taken from
the secure key buffer.

If dwUse equals zero the specified key is deleted. In that case all parameters but lpsKey are
ignored.

wKeyCheckMode
Specifies the mode that is used to create the key check value. It can be one of the following
flags:

Value Meaning
WFS_PIN_KCVNONE There is no key check value verification required.
WFS_PIN_KCVSELF The key check value is created by an encryption of the

key with itself.
WFS_PIN_KCVZERO The key check value is created by an encryption of a

zero value with the key.

Page 33
CWA 14050-42: 2005

lpxKeyCheckValue
Specifies a check value to verify that the value of the imported key is correct. It can be NULL,
if no key check value verification is required and wKeyCheckMode equals
WFS_PIN_KCVNONE.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key encryption key was not found.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be

overwritten.
WFS_ERR_PIN_KEYNOVALUE The specified key encryption key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use conflicts with a previously for

the same key specified one.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxValue is not supported or the

encryption key in the secure key buffer is invalid
(or has not been entered).

WFS_ERR_PIN_KEYINVALID The key value is invalid. The key check value
verification failed.

WFS_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a key
of the specified type.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.
Comments When keys are loaded in multiple parts, all parts of the key loaded must set the relevant

construction value in the dwUse field along with any usage’s needed for the final key use. The
usage flag must be consistent for all parts of the key. Activation of a key entered in multiple parts
is indicated through an additional final call to this command, where the construction flag is
removed from dwUse but those other usage’s defined during the key part loading must still be
used. No key data is passed during the final activation of the key. A
WFS_ERR_PIN_ACCESSDENIED error will be returned if the key cannot be activated, e.g. if
only one key part has been entered.

When a construction flag is set, the optional KCV applies to the key part being imported. If the
KVC provided for a key part fails verification, the key part will not be accepted. When the key is
being activated, the optional KCV applies to the complete key already stored. If the KVC
provided during activation fails verification, the key will not be activated.

 When the first part of the key is received, it is stored directly in the device. All subsequent parts
are combined with the existing value in the device through XOR. No sub-parts of the key are
maintained separately. While a key still has a dwUse value that indicates it is under construction, it
cannot be used for cryptographic functions.

Page 34
CWA 14050-42: 2005

7.2 Remote Key Loading Using Signatures
This section contains commands that are used for Remote Key Loading with Signatures. Applications wishing to
use such functionality must use these commands. Section Error! Reference source not found. provides additional
explanation on how these commands are used. Section Error! Reference source not found. defines the fixed
names for the Security Item and RSA keys that must be loaded during manufacture.

7.2.1 WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY

Description The Public RSA key passed by the application is loaded in the encryption module. The dwUse
parameter restricts the cryptographic functions that the imported key can be used for.

This command provides similar public key import functionality to that provided with
WFS_CMD_PIN_IMPORT_KEY_EX. The primary advantage gained through using this function
is that the imported key can be verified as having come from a trusted source. If a Signature
algorithm is specified that is not supported by the PIN SP, then the request will not be accepted
and the command fails.

Input Param LPWFSPINIMPORTRSAPUBLICKEY lpImportRSAPublicKey;

typedef struct _wfs_pin_import_rsa_public_key
{
LPSTR lpsKey;
LPWFSXDATA lpxValue;
DWORD dwUse;
LPSTR lpsSigKey;
DWORD dwRSASignatureAlgorithm;
LPWFSXDATA lpxSignature;

 } WFSPINIMPORTRSAPUBLICKEY, * LPWFSPINIMPORTRSAPUBLICKEY;

lpsKey
Specifies the name of key being loaded
lpxValue
Contains the PKCS #1 formatted RSA Public Key to be loaded, represented in DER encoded
ASN.1.

dwUse
Specifies the type of access for which the key can be used. If this parameter equals zero, the key is
deleted. Otherwise the parameter can be one of the following flags:

Value Meaning
WFS_PIN_USERSAPUBLIC key is used as a public key for RSA

Encryption including EMV PIN block
creation

WFS_PIN_USERSAPUBLICVERIFY key is used as a public key for RSA
signature verification and/or data
decryption.

If dwUse equals zero the specified key is deleted.

When no signature is required to authenticate the deletion of a public key all parameters but
lpsKey are ignored. In addition, WFS_CMD_PIN_IMPORT_KEY,
WFS_CMD_PIN_IMPORT_KEY_EX, WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY and
WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY can be used to delete a key that has been
imported with this command.

Page 35
CWA 14050-42: 2005

When a signature is required to authenticate the deletion of the public key, all parameters in the
command are used. lpxValue must contain the concatenation of the public key to be deleted and
the Security Item which uniquely identifies the PIN device (see the
WFS_CMD_PIN_EXPORT_RSA_ISSUER_SIGNED_ITEM command). lpxSignature contains
the signature generated from lpxValue using the private key component of the public key being
deleted.

The equivalent commands in the certificate scheme must not be used to delete a key imported
through the signature scheme.

lpsSigKey
lpsSigKey specifies the name of a previously loaded asymmetric key (i.e. an RSA Public Key)
which will be used to verify the signature passed in lpxSignature. The default Signature Issuer
public key (installed in a secure environment during manufacture) will be used, if lpsSigKey is
either NULL or contains the name of the default Signature issuer as defined in section Error!
Reference source not found..

dwRSASignatureAlgorithm
Defines the algorithm used to generate the Signature specified in lpxSignature. Contains one of
the following values:

Value Meaning
WFS_PIN_SIGN_NA No signature algorithm specified. No

signature verification will take place and the
contents of lpsSigKey and lpxSignature are
ignored.

WFS_PIN_SIGN_RSASSA_PKCS1_V1_5 Use the RSASSA-PKCS1-v1.5 algorithm.
WFS_PIN_SIGN_RSASSA_PSS Use the RSASSA-PSS algorithm.

 lpxSignature

Contains the Signature associated with the key being imported or deleted. The Signature is used to
validate the key request has been received from a trusted sender. Contains NULL when no key
validation is required.

Output Param LPWFSPINIMPORTRSAPUBLICKEYOUTPUT lpImportRSAPublicKeyOutput;

 typedef struct _wfs_pin_import_rsa_public_key_output
{
DWORD dwRSAKeyCheckMode;
LPWFSXDATA lpxKeyCheckValue;
} WFSPINIMPORTRSAPUBLICKEYOUTPUT, * LPWFSPINIMPORTRSAPUBLICKEYOUTPUT;

dwRSAKeyCheckMode
Defines algorithm/method used to generate the public key check value/thumb print. The check
value can be used to verify that the public key has been imported correctly. It can be can be one of
the following flags:

Value Meaning
WFS_PIN_RSA_KCV_NONE No check value is returned in lpxKeyCheckValue.
WFS_PIN_RSA_KCV_SHA1 lpxKeyCheckValue contains a SHA-1 digest of the

public key

 lpxKeyCheckValue
 Contains the public key check value as defined by the dwRSAKeyCheckMode flag.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.

Page 36
CWA 14050-42: 2005

WFS_ERR_PIN_KEYNOTFOUND The key name supplied in lpsSigKey was not
found.

WFS_ERR_PIN_USEVIOLATION An invalid use was specified for the key being
imported.

WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be
overwritten.

WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxValue is not supported.
WFS_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a key

of the specified type.
WFS_ERR_PIN_SIG_NOT_SUPP The SP does not support the Signature Algorithm

requested. The key was discarded
WFS_ERR_PIN_SIGNATUREINVALID The signature verification failed. The key has not

been stored or deleted.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.
Comments None.

8. New Events

None.

9. Changes to Existing Events

9.1 WFS_EXEE_PIN_KEY

Description This event specifies that any active key has been pressed at the PIN pad. It is used if the device
has no internal display unit and the application has to manage the display of the entered digits.

It is the responsibility of the application to identify the mapping between the FDK code and the
physical location of the FDK.

Event Param LPWFSPINKEY lpKey;

typedef struct _wfs_pin_key
 {
 WORD wCompletion;
 ULONG ulDigit;
 } WFSPINKEY, * LPWFSPINKEY;

 wCompletion
Specifies the reason for completion or continuation of the entry. Possible values are:
(see command WFS_CMD_PIN_GET_PIN)

 ulDigit
Specifies the digit entered by the user. When working in encryption mode or secure key entry
mode (WFS_CMD_PIN_GET_PIN and WFS_CMD_PIN_SECUREKEY_ENTRY), the value
of this field is zero for the function keys 0-9 and A-F. Otherwise, for each key pressed, the
corresponding FK or FDK mask value is stored in this field.

Comments None.

Page 37
CWA 14050-42: 2005

10. C - Header File

/**
* *
*xfspin.h XFS - Personal Identification Number Keypad (PIN) definitions *
* *
* Version 3.03 (24/09/04) *
* *
**/

#ifndef __INC_XFSPIN__H
#define __INC_XFSPIN__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack(push,1)

/* values of WFSPINCAPS.wClass */

#define WFS_SERVICE_CLASS_PIN (4)
#define WFS_SERVICE_CLASS_VERSION_PIN (0x0303) /* Version 3.03 */
#define WFS_SERVICE_CLASS_NAME_PIN "PIN"

#define PIN_SERVICE_OFFSET (WFS_SERVICE_CLASS_PIN * 100)

/* PIN Info Commands */

#define WFS_INF_PIN_STATUS (PIN_SERVICE_OFFSET + 1)
#define WFS_INF_PIN_CAPABILITIES (PIN_SERVICE_OFFSET + 2)
#define WFS_INF_PIN_KEY_DETAIL (PIN_SERVICE_OFFSET + 4)
#define WFS_INF_PIN_FUNCKEY_DETAIL (PIN_SERVICE_OFFSET + 5)
#define WFS_INF_PIN_HSM_TDATA (PIN_SERVICE_OFFSET + 6)
#define WFS_INF_PIN_KEY_DETAIL_EX (PIN_SERVICE_OFFSET + 7)
#define WFS_INF_PIN_SECUREKEY_DETAIL (PIN_SERVICE_OFFSET + 8)

/* PIN Command Verbs */

#define WFS_CMD_PIN_CRYPT (PIN_SERVICE_OFFSET + 1)
#define WFS_CMD_PIN_IMPORT_KEY (PIN_SERVICE_OFFSET + 3)
#define WFS_CMD_PIN_GET_PIN (PIN_SERVICE_OFFSET + 5)
#define WFS_CMD_PIN_GET_PINBLOCK (PIN_SERVICE_OFFSET + 7)
#define WFS_CMD_PIN_GET_DATA (PIN_SERVICE_OFFSET + 8)
#define WFS_CMD_PIN_INITIALIZATION (PIN_SERVICE_OFFSET + 9)
#define WFS_CMD_PIN_LOCAL_DES (PIN_SERVICE_OFFSET + 10)
#define WFS_CMD_PIN_LOCAL_EUROCHEQUE (PIN_SERVICE_OFFSET + 11)
#define WFS_CMD_PIN_LOCAL_VISA (PIN_SERVICE_OFFSET + 12)
#define WFS_CMD_PIN_CREATE_OFFSET (PIN_SERVICE_OFFSET + 13)
#define WFS_CMD_PIN_DERIVE_KEY (PIN_SERVICE_OFFSET + 14)
#define WFS_CMD_PIN_PRESENT_IDC (PIN_SERVICE_OFFSET + 15)
#define WFS_CMD_PIN_LOCAL_BANKSYS (PIN_SERVICE_OFFSET + 16)
#define WFS_CMD_PIN_BANKSYS_IO (PIN_SERVICE_OFFSET + 17)
#define WFS_CMD_PIN_RESET (PIN_SERVICE_OFFSET + 18)
#define WFS_CMD_PIN_HSM_SET_TDATA (PIN_SERVICE_OFFSET + 19)
#define WFS_CMD_PIN_SECURE_MSG_SEND (PIN_SERVICE_OFFSET + 20)
#define WFS_CMD_PIN_SECURE_MSG_RECEIVE (PIN_SERVICE_OFFSET + 21)
#define WFS_CMD_PIN_GET_JOURNAL (PIN_SERVICE_OFFSET + 22)
#define WFS_CMD_PIN_IMPORT_KEY_EX (PIN_SERVICE_OFFSET + 23)
#define WFS_CMD_PIN_ENC_IO (PIN_SERVICE_OFFSET + 24)
#define WFS_CMD_PIN_HSM_INIT (PIN_SERVICE_OFFSET + 25)
#define WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY (PIN_SERVICE_OFFSET + 26)
#define WFS_CMD_PIN_EXPORT_RSA_ISSUER_SIGNED_ITEM (PIN_SERVICE_OFFSET + 27)
#define WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY (PIN_SERVICE_OFFSET + 28)
#define WFS_CMD_PIN_GENERATE_RSA_KEY_PAIR (PIN_SERVICE_OFFSET + 29)
#define WFS_CMD_PIN_EXPORT_RSA_EPP_SIGNED_ITEM (PIN_SERVICE_OFFSET + 30)
#define WFS_CMD_PIN_LOAD_CERTIFICATE (PIN_SERVICE_OFFSET + 31)
#define WFS_CMD_PIN_GET_CERTIFICATE (PIN_SERVICE_OFFSET + 32)

Page 38
CWA 14050-42: 2005

#define WFS_CMD_PIN_REPLACE_CERTIFICATE (PIN_SERVICE_OFFSET + 33)
#define WFS_CMD_PIN_START_KEY_EXCHANGE (PIN_SERVICE_OFFSET + 34)
#define WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY (PIN_SERVICE_OFFSET + 35)
#define WFS_CMD_PIN_EMV_IMPORT_PUBLIC_KEY (PIN_SERVICE_OFFSET + 36)
#define WFS_CMD_PIN_DIGEST (PIN_SERVICE_OFFSET + 37)
#define WFS_CMD_PIN_SECUREKEY_ENTRY (PIN_SERVICE_OFFSET + 38)
#define WFS_CMD_PIN_GENERATE_KCV (PIN_SERVICE_OFFSET + 39)

/* PIN Messages */

#define WFS_EXEE_PIN_KEY (PIN_SERVICE_OFFSET + 1)
#define WFS_SRVE_PIN_INITIALIZED (PIN_SERVICE_OFFSET + 2)
#define WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS (PIN_SERVICE_OFFSET + 3)
#define WFS_SRVE_PIN_OPT_REQUIRED (PIN_SERVICE_OFFSET + 4)
#define WFS_SRVE_PIN_HSM_TDATA_CHANGED (PIN_SERVICE_OFFSET + 5)
#define WFS_SRVE_PIN_CERTIFICATE_CHANGE (PIN_SERVICE_OFFSET + 6)

/* values of WFSPINSTATUS.fwDevice */

#define WFS_PIN_DEVONLINE WFS_STAT_DEVONLINE
#define WFS_PIN_DEVOFFLINE WFS_STAT_DEVOFFLINE
#define WFS_PIN_DEVPOWEROFF WFS_STAT_DEVPOWEROFF
#define WFS_PIN_DEVNODEVICE WFS_STAT_DEVNODEVICE
#define WFS_PIN_DEVHWERROR WFS_STAT_DEVHWERROR
#define WFS_PIN_DEVUSERERROR WFS_STAT_DEVUSERERROR
#define WFS_PIN_DEVBUSY WFS_STAT_DEVBUSY

/* values of WFSPINSTATUS.fwEncStat */

#define WFS_PIN_ENCREADY (0)
#define WFS_PIN_ENCNOTREADY (1)
#define WFS_PIN_ENCNOTINITIALIZED (2)
#define WFS_PIN_ENCBUSY (3)
#define WFS_PIN_ENCUNDEFINED (4)
#define WFS_PIN_ENCINITIALIZED (5)

/* values of WFSPINCAPS.wType */

#define WFS_PIN_TYPEEPP (0x0001)
#define WFS_PIN_TYPEEDM (0x0002)
#define WFS_PIN_TYPEHSM (0x0004)

/* values of WFSPINCAPS.fwAlgorithms, WFSPINCRYPT.wAlgorithm */

#define WFS_PIN_CRYPTDESECB (0x0001)
#define WFS_PIN_CRYPTDESCBC (0x0002)
#define WFS_PIN_CRYPTDESCFB (0x0004)
#define WFS_PIN_CRYPTRSA (0x0008)
#define WFS_PIN_CRYPTECMA (0x0010)
#define WFS_PIN_CRYPTDESMAC (0x0020)
#define WFS_PIN_CRYPTTRIDESECB (0x0040)
#define WFS_PIN_CRYPTTRIDESCBC (0x0080)
#define WFS_PIN_CRYPTTRIDESCFB (0x0100)
#define WFS_PIN_CRYPTTRIDESMAC (0x0200)
#define WFS_PIN_CRYPTMAAMAC (0x0400)

/* values of WFSPINCAPS.fwPinFormats */

#define WFS_PIN_FORM3624 (0x0001)
#define WFS_PIN_FORMANSI (0x0002)
#define WFS_PIN_FORMISO0 (0x0004)
#define WFS_PIN_FORMISO1 (0x0008)
#define WFS_PIN_FORMECI2 (0x0010)
#define WFS_PIN_FORMECI3 (0x0020)
#define WFS_PIN_FORMVISA (0x0040)
#define WFS_PIN_FORMDIEBOLD (0x0080)
#define WFS_PIN_FORMDIEBOLDCO (0x0100)
#define WFS_PIN_FORMVISA3 (0x0200)
#define WFS_PIN_FORMBANKSYS (0x0400)
#define WFS_PIN_FORMEMV (0x0800)
#define WFS_PIN_FORMISO3 (0x2000)

/* values of WFSPINCAPS.fwDerivationAlgorithms */

Page 39
CWA 14050-42: 2005

#define WFS_PIN_CHIP_ZKA (0x0001)

/* values of WFSPINCAPS.fwPresentationAlgorithms */

#define WFS_PIN_PRESENT_CLEAR (0x0001)

/* values of WFSPINCAPS.fwDisplay */

#define WFS_PIN_DISPNONE (1)
#define WFS_PIN_DISPLEDTHROUGH (2)
#define WFS_PIN_DISPDISPLAY (3)

/* values of WFSPINCAPS.fwIDKey */

#define WFS_PIN_IDKEYINITIALIZATION (0x0001)
#define WFS_PIN_IDKEYIMPORT (0x0002)

/* values of WFSPINCAPS.fwValidationAlgorithms */

#define WFS_PIN_DES (0x0001)
#define WFS_PIN_EUROCHEQUE (0x0002)
#define WFS_PIN_VISA (0x0004)
#define WFS_PIN_DES_OFFSET (0x0008)
#define WFS_PIN_BANKSYS (0x0010)

/* values of WFSPINCAPS.fwKeyCheckModes and
 WFSPINIMPORTKEYEX.wKeyCheckMode */

#define WFS_PIN_KCVNONE (0x0000)
#define WFS_PIN_KCVSELF (0x0001)
#define WFS_PIN_KCVZERO (0x0002)

/* values of WFSPINKEYDETAIL.fwUse and WFSPINKEYDETAILEX.dwUse */

#define WFS_PIN_USECRYPT (0x0001)
#define WFS_PIN_USEFUNCTION (0x0002)
#define WFS_PIN_USEMACING (0x0004)
#define WFS_PIN_USEKEYENCKEY (0x0020)
#define WFS_PIN_USENODUPLICATE (0x0040)
#define WFS_PIN_USESVENCKEY (0x0080)
#define WFS_PIN_USECONSTRUCT (0x0100)
#define WFS_PIN_USESECURECONSTRUCT (0x0200)

/* Additional values of WFSPINKEYDETAILEX.dwUse */

#define WFS_PIN_USEPINLOCAL (0x10000)
#define WFS_PIN_USERSAPUBLIC (0x20000)
#define WFS_PIN_USERSAPRIVATE (0x40000)
#define WFS_PIN_USECHIPINFO (0x100000)
#define WFS_PIN_USECHIPPIN (0x200000)
#define WFS_PIN_USECHIPPS (0x400000)
#define WFS_PIN_USECHIPMAC (0x800000)
#define WFS_PIN_USECHIPLT (0x1000000)
#define WFS_PIN_USECHIPMACLZ (0x2000000)
#define WFS_PIN_USECHIPMACAZ (0x4000000)
#define WFS_PIN_USERSAPUBLICVERIFY (0x8000000)
#define WFS_PIN_USERSAPRIVATESIGN (0x10000000)

/* values of WFSPINFUNCKEYDETAIL.ulFuncMask */

#define WFS_PIN_FK_0 (0x00000001)
#define WFS_PIN_FK_1 (0x00000002)
#define WFS_PIN_FK_2 (0x00000004)
#define WFS_PIN_FK_3 (0x00000008)
#define WFS_PIN_FK_4 (0x00000010)
#define WFS_PIN_FK_5 (0x00000020)
#define WFS_PIN_FK_6 (0x00000040)
#define WFS_PIN_FK_7 (0x00000080)
#define WFS_PIN_FK_8 (0x00000100)
#define WFS_PIN_FK_9 (0x00000200)
#define WFS_PIN_FK_ENTER (0x00000400)
#define WFS_PIN_FK_CANCEL (0x00000800)

Page 40
CWA 14050-42: 2005

#define WFS_PIN_FK_CLEAR (0x00001000)
#define WFS_PIN_FK_BACKSPACE (0x00002000)
#define WFS_PIN_FK_HELP (0x00004000)
#define WFS_PIN_FK_DECPOINT (0x00008000)
#define WFS_PIN_FK_00 (0x00010000)
#define WFS_PIN_FK_000 (0x00020000)
#define WFS_PIN_FK_RES1 (0x00040000)
#define WFS_PIN_FK_RES2 (0x00080000)
#define WFS_PIN_FK_RES3 (0x00100000)
#define WFS_PIN_FK_RES4 (0x00200000)
#define WFS_PIN_FK_RES5 (0x00400000)
#define WFS_PIN_FK_RES6 (0x00800000)
#define WFS_PIN_FK_RES7 (0x01000000)
#define WFS_PIN_FK_RES8 (0x02000000)
#define WFS_PIN_FK_OEM1 (0x04000000)
#define WFS_PIN_FK_OEM2 (0x08000000)
#define WFS_PIN_FK_OEM3 (0x10000000)
#define WFS_PIN_FK_OEM4 (0x20000000)
#define WFS_PIN_FK_OEM5 (0x40000000)
#define WFS_PIN_FK_OEM6 (0x80000000)

/* additional values of WFSPINFUNCKEYDETAIL.ulFuncMask */
#define WFS_PIN_FK_UNUSED (0x00000000)

#define WFS_PIN_FK_A WFS_PIN_FK_RES1
#define WFS_PIN_FK_B WFS_PIN_FK_RES2
#define WFS_PIN_FK_C WFS_PIN_FK_RES3
#define WFS_PIN_FK_D WFS_PIN_FK_RES4
#define WFS_PIN_FK_E WFS_PIN_FK_RES5
#define WFS_PIN_FK_F WFS_PIN_FK_RES6
#define WFS_PIN_FK_SHIFT WFS_PIN_FK_RES7

/* values of WFSPINFUNCKEY.ulFDK */

#define WFS_PIN_FK_FDK01 (0x00000001)
#define WFS_PIN_FK_FDK02 (0x00000002)
#define WFS_PIN_FK_FDK03 (0x00000004)
#define WFS_PIN_FK_FDK04 (0x00000008)
#define WFS_PIN_FK_FDK05 (0x00000010)
#define WFS_PIN_FK_FDK06 (0x00000020)
#define WFS_PIN_FK_FDK07 (0x00000040)
#define WFS_PIN_FK_FDK08 (0x00000080)
#define WFS_PIN_FK_FDK09 (0x00000100)
#define WFS_PIN_FK_FDK10 (0x00000200)
#define WFS_PIN_FK_FDK11 (0x00000400)
#define WFS_PIN_FK_FDK12 (0x00000800)
#define WFS_PIN_FK_FDK13 (0x00001000)
#define WFS_PIN_FK_FDK14 (0x00002000)
#define WFS_PIN_FK_FDK15 (0x00004000)
#define WFS_PIN_FK_FDK16 (0x00008000)
#define WFS_PIN_FK_FDK17 (0x00010000)
#define WFS_PIN_FK_FDK18 (0x00020000)
#define WFS_PIN_FK_FDK19 (0x00040000)
#define WFS_PIN_FK_FDK20 (0x00080000)
#define WFS_PIN_FK_FDK21 (0x00100000)
#define WFS_PIN_FK_FDK22 (0x00200000)
#define WFS_PIN_FK_FDK23 (0x00400000)
#define WFS_PIN_FK_FDK24 (0x00800000)
#define WFS_PIN_FK_FDK25 (0x01000000)
#define WFS_PIN_FK_FDK26 (0x02000000)
#define WFS_PIN_FK_FDK27 (0x04000000)
#define WFS_PIN_FK_FDK28 (0x08000000)
#define WFS_PIN_FK_FDK29 (0x10000000)
#define WFS_PIN_FK_FDK30 (0x20000000)
#define WFS_PIN_FK_FDK31 (0x40000000)
#define WFS_PIN_FK_FDK32 (0x80000000)

/* values of WFSPINCRYPT.wMode */

#define WFS_PIN_MODEENCRYPT (1)
#define WFS_PIN_MODEDECRYPT (2)
#define WFS_PIN_MODERANDOM (3)

/* values of WFSPINENTRY.wCompletion */

Page 41
CWA 14050-42: 2005

#define WFS_PIN_COMPAUTO (0)
#define WFS_PIN_COMPENTER (1)
#define WFS_PIN_COMPCANCEL (2)
#define WFS_PIN_COMPCONTINUE (6)
#define WFS_PIN_COMPCLEAR (7)
#define WFS_PIN_COMPBACKSPACE (8)
#define WFS_PIN_COMPFDK (9)
#define WFS_PIN_COMPHELP (10)
#define WFS_PIN_COMPFK (11)
#define WFS_PIN_COMPCONTFDK (12)

/* values of WFSPINSECMSG.wProtocol */
#define WFS_PIN_PROTISOAS (1)
#define WFS_PIN_PROTISOLZ (2)
#define WFS_PIN_PROTISOPS (3)
#define WFS_PIN_PROTCHIPZKA (4)
#define WFS_PIN_PROTRAWDATA (5)
#define WFS_PIN_PROTPBM (6)
#define WFS_PIN_PROTHSMLDI (7)
#define WFS_PIN_PROTGENAS (8)

/* values of WFSPINHSMINIT.wInitMode. */
#define WFS_PIN_INITTEMP (1)
#define WFS_PIN_INITDEFINITE (2)
#define WFS_PIN_INITIRREVERSIBLE (3)

/* values of WFSPINENCIO.wProtocol */
#define WFS_PIN_ENC_PROT_CH (0x0001)
#define WFS_PIN_ENC_PROT_GIECB (0x0002)

/* values for WFS_SRVE_PIN_CERTIFICATE_CHANGE */
#define WFS_PIN_CERT_PRIMARY (0x00000001)
#define WFS_PIN_CERT_SECONDARY (0x00000002)
#define WFS_PIN_CERT_NOTREADY (0x00000004)

/* Values for WFSPINCAPS.dwRSAAuthenticationScheme and the fast-track Capabilities
lpszExtra parameter, REMOTE_KEY_SCHEME. */
#define WFS_PIN_RSA_AUTH_2PARTY_SIG (0x00000001)
#define WFS_PIN_RSA_AUTH_3PARTY_CERT (0x00000002)

/* Values for WFSPINCAPS.dwSignatureScheme and the fast-track Capabilities lpzExtra
parameter, SIGNATURE_CAPABILITIES. */
#define WFS_PIN_SIG_GEN_RSA_KEY_PAIR (0x00000001)
#define WFS_PIN_SIG_RANDOM_NUMBER (0x00000002)
#define WFS_PIN_SIG_EXPORT_EPP_ID (0x00000004)

/* values of WFSPINIMPORTRSAPUBLICKEY.dwRSASignatureAlgorithm */
#define WFS_PIN_SIGN_NA (0)
#define WFS_PIN_SIGN_RSASSA_PKCS1_V1_5 (0x00000001)
#define WFS_PIN_SIGN_RSASSA_PSS (0x00000002)

/* values of WFSPINIMPORTRSAPUBLICKEYOUTPUT.dwRSAKeyCheckMode */
#define WFS_PIN_RSA_KCV_NONE (0x00000000)
#define WFS_PIN_RSA_KCV_SHA1 (0x00000001)

/* values of WFSPINEXPORTRSAISSUERSIGNEDITEM.wExportItemType and */
/* WFSPINEXPORTRSAEPPSIGNEDITEM.wExportItemType */
#define WFS_PIN_EXPORT_EPP_ID (0x0001)
#define WFS_PIN_EXPORT_PUBLIC_KEY (0x0002)

/* values of WFSPINIMPORTRSASIGNEDDESKEY.dwRSAEncipherAlgorithm */
#define WFS_PIN_CRYPT_RSAES_PKCS1_V1_5 (0x00000001)
#define WFS_PIN_CRYPT_RSAES_OAEP (0x00000002)

/* values of WFSPINGENERATERSAKEYPAIR.wExponentValue */
#define WFS_PIN_DEFAULT (0)
#define WFS_PIN_EXPONENT_1 (1)
#define WFS_PIN_EXPONENT_4 (2)
#define WFS_PIN_EXPONENT_16 (3)

Page 42
CWA 14050-42: 2005

/* values of WFSPINIMPORTRSASIGNEDDESKEYOUTPUT.wKeyLength and */
/* WFSPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT.wKeyLength */
#define WFS_PIN_KEYSINGLE (0x0001)
#define WFS_PIN_KEYDOUBLE (0x0002)

/* values of WFSPINGETCERTIFICATE.wGetCertificate */
#define WFS_PIN_PUBLICENCKEY (1)
#define WFS_PIN_PUBLICVERIFICATIONKEY (2)

/* values for WFSPINEMVIMPORTPUBLICKEY.wImportScheme */
#define WFS_PIN_EMV_IMPORT_PLAIN_CA (0x0001)
#define WFS_PIN_EMV_IMPORT_CHKSUM_CA (0x0002)
#define WFS_PIN_EMV_IMPORT_EPI_CA (0x0003)
#define WFS_PIN_EMV_IMPORT_ISSUER (0x0004)
#define WFS_PIN_EMV_IMPORT_ICC (0x0005)
#define WFS_PIN_EMV_IMPORT_ICC_PIN (0x0006)
#define WFS_PIN_EMV_IMPORT_PKCSV1_5_CA (0x0007)

/* values for WFSPINDIGEST.wHashAlgorithm */
#define WFS_PIN_HASH_SHA1_DIGEST (0x0001)

/* values of WFSPINSECUREKEYDETAIL.fwKeyEntryMode */
#define WFS_PIN_SECUREKEY_NOTSUPP (0x0000)
#define WFS_PIN_SECUREKEY_REG_SHIFT (0x0001)
#define WFS_PIN_SECUREKEY_REG_UNIQUE (0x0002)
#define WFS_PIN_SECUREKEY_IRREG_SHIFT (0x0004)
#define WFS_PIN_SECUREKEY_IRREG_UNIQUE (0x0008)

/* XFS PIN Errors */

#define WFS_ERR_PIN_KEYNOTFOUND (-(PIN_SERVICE_OFFSET + 0))
#define WFS_ERR_PIN_MODENOTSUPPORTED (-(PIN_SERVICE_OFFSET + 1))
#define WFS_ERR_PIN_ACCESSDENIED (-(PIN_SERVICE_OFFSET + 2))
#define WFS_ERR_PIN_INVALIDID (-(PIN_SERVICE_OFFSET + 3))
#define WFS_ERR_PIN_DUPLICATEKEY (-(PIN_SERVICE_OFFSET + 4))
#define WFS_ERR_PIN_KEYNOVALUE (-(PIN_SERVICE_OFFSET + 6))
#define WFS_ERR_PIN_USEVIOLATION (-(PIN_SERVICE_OFFSET + 7))
#define WFS_ERR_PIN_NOPIN (-(PIN_SERVICE_OFFSET + 8))
#define WFS_ERR_PIN_INVALIDKEYLENGTH (-(PIN_SERVICE_OFFSET + 9))
#define WFS_ERR_PIN_KEYINVALID (-(PIN_SERVICE_OFFSET + 10))
#define WFS_ERR_PIN_KEYNOTSUPPORTED (-(PIN_SERVICE_OFFSET + 11))
#define WFS_ERR_PIN_NOACTIVEKEYS (-(PIN_SERVICE_OFFSET + 12))
#define WFS_ERR_PIN_NOTERMINATEKEYS (-(PIN_SERVICE_OFFSET + 14))
#define WFS_ERR_PIN_MINIMUMLENGTH (-(PIN_SERVICE_OFFSET + 15))
#define WFS_ERR_PIN_PROTOCOLNOTSUPP (-(PIN_SERVICE_OFFSET + 16))
#define WFS_ERR_PIN_INVALIDDATA (-(PIN_SERVICE_OFFSET + 17))
#define WFS_ERR_PIN_NOTALLOWED (-(PIN_SERVICE_OFFSET + 18))
#define WFS_ERR_PIN_NOKEYRAM (-(PIN_SERVICE_OFFSET + 19))
#define WFS_ERR_PIN_NOCHIPTRANSACTIVE (-(PIN_SERVICE_OFFSET + 20))
#define WFS_ERR_PIN_ALGORITHMNOTSUPP (-(PIN_SERVICE_OFFSET + 21))
#define WFS_ERR_PIN_FORMATNOTSUPP (-(PIN_SERVICE_OFFSET + 22))
#define WFS_ERR_PIN_HSMSTATEINVALID (-(PIN_SERVICE_OFFSET + 23))
#define WFS_ERR_PIN_MACINVALID (-(PIN_SERVICE_OFFSET + 24))
#define WFS_ERR_PIN_PROTINVALID (-(PIN_SERVICE_OFFSET + 25))
#define WFS_ERR_PIN_FORMATINVALID (-(PIN_SERVICE_OFFSET + 26))
#define WFS_ERR_PIN_CONTENTINVALID (-(PIN_SERVICE_OFFSET + 27))
#define WFS_ERR_PIN_SIG_NOT_SUPP (-(PIN_SERVICE_OFFSET + 29))
#define WFS_ERR_PIN_INVALID_MOD_LEN (-(PIN_SERVICE_OFFSET + 31))
#define WFS_ERR_PIN_INVALIDCERTSTATE (-(PIN_SERVICE_OFFSET + 32))
#define WFS_ERR_PIN_KEY_GENERATION_ERROR (-(PIN_SERVICE_OFFSET + 33))
#define WFS_ERR_PIN_EMV_VERIFY_FAILED (-(PIN_SERVICE_OFFSET + 34))
#define WFS_ERR_PIN_RANDOMINVALID (-(PIN_SERVICE_OFFSET + 35))
#define WFS_ERR_PIN_SIGNATUREINVALID (-(PIN_SERVICE_OFFSET + 36))
#define WFS_ERR_PIN_SNSCDINVALID (-(PIN_SERVICE_OFFSET + 37))
#define WFS_ERR_PIN_NORSAKEYPAIR (-(PIN_SERVICE_OFFSET + 38))

/*===*/
/* PIN Info Command Structures and variables */
/*===*/

Page 43
CWA 14050-42: 2005

typedef struct _wfs_pin_status
{
 WORD fwDevice;
 WORD fwEncStat;
 LPSTR lpszExtra;
} WFSPINSTATUS, * LPWFSPINSTATUS;

typedef struct _wfs_pin_caps
{
 WORD wClass;
 WORD fwType;
 BOOL bCompound;
 USHORT usKeyNum;
 WORD fwAlgorithms;
 WORD fwPinFormats;
 WORD fwDerivationAlgorithms;
 WORD fwPresentationAlgorithms;
 WORD fwDisplay;
 BOOL bIDConnect;
 WORD fwIDKey;
 WORD fwValidationAlgorithms;
 WORD fwKeyCheckModes;
 LPSTR lpszExtra;
} WFSPINCAPS, * LPWFSPINCAPS;

typedef struct _wfs_pin_key_detail
{
 LPSTR lpsKeyName;
 WORD fwUse;
 BOOL bLoaded;
} WFSPINKEYDETAIL, * LPWFSPINKEYDETAIL;

typedef struct _wfs_pin_fdk
{
 ULONG ulFDK;
 USHORT usXPosition;
 USHORT usYPosition;
} WFSPINFDK, * LPWFSPINFDK;

typedef struct _wfs_pin_func_key_detail
{
 ULONG ulFuncMask;
 USHORT usNumberFDKs;
 LPWFSPINFDK * lppFDKs;
} WFSPINFUNCKEYDETAIL, * LPWFSPINFUNCKEYDETAIL;

typedef struct _wfs_pin_key_detail_ex
{
 LPSTR lpsKeyName;
 DWORD dwUse;
 BYTE bGeneration;
 BYTE bVersion;
 BYTE bActivatingDate[4];
 BYTE bExpiryDate[4];
 BOOL bLoaded;
} WFSPINKEYDETAILEX, * LPWFSPINKEYDETAILEX;

/* WFS_INF_PIN_SECUREKEY_DETAIL command key layout output structure */
typedef struct _wfs_pin_hex_keys
{
 USHORT usXPos;
 USHORT usYPos;
 USHORT usXSize;
 USHORT usYSize;
 ULONG ulFK;
 ULONG ulShiftFK;
} WFSPINHEXKEYS, * LPWFSPINHEXKEYS;

/* WFS_INF_PIN_SECUREKEY_DETAIL command output structure */
typedef struct _wfs_pin_secure_key_detail
{
 WORD fwKeyEntryMode;
 LPWFSPINFUNCKEYDETAIL lpFuncKeyDetail;
 ULONG ulClearFDK;

Page 44
CWA 14050-42: 2005

 ULONG ulCancelFDK;
 ULONG ulBackspaceFDK;
 ULONG ulEnterFDK;
 WORD wColumns;
 WORD wRows;
 LPWFSPINHEXKEYS * lppHexKeys;
} WFSPINSECUREKEYDETAIL, * LPWFSPINSECUREKEYDETAIL;

/*===*/
/* PIN Execute Command Structures */
/*===*/

typedef struct _wfs_hex_data
{
 USHORT usLength;
 LPBYTE lpbData;
} WFSXDATA, * LPWFSXDATA;

typedef struct _wfs_pin_crypt
{
 WORD wMode;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 WORD wAlgorithm;
 LPSTR lpsStartValueKey;
 LPWFSXDATA lpxStartValue;
 BYTE bPadding;
 BYTE bCompression;
 LPWFSXDATA lpxCryptData;
} WFSPINCRYPT, * LPWFSPINCRYPT;

typedef struct _wfs_pin_import
{
 LPSTR lpsKey;
 LPSTR lpsEncKey;
 LPWFSXDATA lpxIdent;
 LPWFSXDATA lpxValue;
 WORD fwUse;
} WFSPINIMPORT, * LPWFSPINIMPORT;

typedef struct _wfs_pin_derive
{
 WORD wDerivationAlgorithm;
 LPSTR lpsKey;
 LPSTR lpsKeyGenKey;
 LPSTR lpsStartValueKey;
 LPWFSXDATA lpxStartValue;
 BYTE bPadding;
 LPWFSXDATA lpxInputData;
 LPWFSXDATA lpxIdent;
 } WFSPINDERIVE, * LPWFSPINDERIVE;

typedef struct _wfs_pin_getpin
{
 USHORT usMinLen;
 USHORT usMaxLen;
 BOOL bAutoEnd;
 CHAR cEcho;
 ULONG ulActiveFDKs;
 ULONG ulActiveKeys;
 ULONG ulTerminateFDKs;
 ULONG ulTerminateKeys;
} WFSPINGETPIN, * LPWFSPINGETPIN;

typedef struct _wfs_pin_entry
{
 USHORT usDigits;
 WORD wCompletion;
} WFSPINENTRY, * LPWFSPINENTRY;

typedef struct _wfs_pin_local_des
{
 LPSTR lpsValidationData;

Page 45
CWA 14050-42: 2005

 LPSTR lpsOffset;
 BYTE bPadding;
 USHORT usMaxPIN;
 USHORT usValDigits;
 BOOL bNoLeadingZero;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 LPSTR lpsDecTable;
} WFSPINLOCALDES, * LPWFSPINLOCALDES;

typedef struct _wfs_pin_create_offset
{
 LPSTR lpsValidationData;
 BYTE bPadding;
 USHORT usMaxPIN;
 USHORT usValDigits;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 LPSTR lpsDecTable;
} WFSPINCREATEOFFSET, * LPWFSPINCREATEOFFSET;

typedef struct _wfs_pin_local_eurocheque
{
 LPSTR lpsEurochequeData;
 LPSTR lpsPVV;
 WORD wFirstEncDigits;
 WORD wFirstEncOffset;
 WORD wPVVDigits;
 WORD wPVVOffset;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 LPSTR lpsDecTable;
} WFSPINLOCALEUROCHEQUE, * LPWFSPINLOCALEUROCHEQUE;

typedef struct _wfs_pin_local_visa
{
 LPSTR lpsPAN;
 LPSTR lpsPVV;
 WORD wPVVDigits;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
} WFSPINLOCALVISA, * LPWFSPINLOCALVISA;

typedef struct _wfs_pin_presentidc
{
 WORD wPresentAlgorithm;
 WORD wChipProtocol;
 ULONG ulChipDataLength;
 LPBYTE lpbChipData;
 LPVOID lpAlgorithmData;
} WFSPINPRESENTIDC, * LPWFSPINPRESENTIDC;

typedef struct _wfs_pin_present_result
{
 WORD wChipProtocol;
 ULONG ulChipDataLength;
 LPBYTE lpbChipData;
} WFSPINPRESENTRESULT, * LPWFSPINPRESENTRESULT;

typedef struct _wfs_pin_presentclear
{
 ULONG ulPINPointer;
 USHORT usPINOffset;
} WFSPINPRESENTCLEAR, * LPWFSPINPRESENTCLEAR;

typedef struct _wfs_pin_block
{
 LPSTR lpsCustomerData;
 LPSTR lpsXORData;
 BYTE bPadding;
 WORD wFormat;
 LPSTR lpsKey;
 LPSTR lpsKeyEncKey;
} WFSPINBLOCK, * LPWFSPINBLOCK;

Page 46
CWA 14050-42: 2005

typedef struct _wfs_pin_getdata
{
 USHORT usMaxLen;
 BOOL bAutoEnd;
 ULONG ulActiveFDKs;
 ULONG ulActiveKeys;
 ULONG ulTerminateFDKs;
 ULONG ulTerminateKeys;
} WFSPINGETDATA, * LPWFSPINGETDATA;

typedef struct _wfs_pin_key
{
 WORD wCompletion;
 ULONG ulDigit;
} WFSPINKEY, * LPWFSPINKEY;

typedef struct _wfs_pin_data
{
 USHORT usKeys;
 LPWFSPINKEY *lpPinKeys;
 WORD wCompletion;
} WFSPINDATA, * LPWFSPINDATA;

typedef struct _wfs_pin_init
{
 LPWFSXDATA lpxIdent;
 LPWFSXDATA lpxKey;
} WFSPININIT, * LPWFSPININIT;

typedef struct _wfs_pin_local_banksys
{
 LPWFSXDATA lpxATMVAC;
} WFSPINLOCALBANKSYS, * LPWFSPINLOCALBANKSYS;

typedef struct _wfs_pin_banksys_io
{
 ULONG ulLength;
 LPBYTE lpbData;
} WFSPINBANKSYSIO, * LPWFSPINBANKSYSIO;

typedef struct _wfs_pin_secure_message
 {
 WORD wProtocol;
 ULONG ulLength;
 LPBYTE lpbMsg;
} WFSPINSECMSG, * LPWFSPINSECMSG;

typedef struct _wfs_pin_import_key_ex
{
 LPSTR lpsKey;
 LPSTR lpsEncKey;
 LPWFSXDATA lpxValue;
 LPWFSXDATA lpxControlVector;
 DWORD dwUse;
 WORD wKeyCheckMode;
 LPWFSXDATA lpxKeyCheckValue;
} WFSPINIMPORTKEYEX, * LPWFSPINIMPORTKEYEX;

typedef struct _wfs_pin_enc_io
{
 WORD wProtocol;
 ULONG ulDataLength;
 LPVOID lpvData;
} WFSPINENCIO, *LPWFSPINENCIO;

/* WFS_CMD_PIN_SECUREKEY_ENTRY command input structure */
typedef struct _wfs_pin_secure_key_entry
{
 USHORT usKeyLen;
 BOOL bAutoEnd;

Page 47
CWA 14050-42: 2005

 ULONG ulActiveFDKs;
 ULONG ulActiveKeys;
 ULONG ulTerminateFDKs;
 ULONG ulTerminateKeys;
 WORD wVerificationType;
} WFSPINSECUREKEYENTRY, * LPWFSPINSECUREKEYENTRY;

/* WFS_CMD_PIN_SECUREKEY_ENTRY command output structure */
typedef struct _wfs_pin_secure_key_entry_out
{
 USHORT usDigits;
 WORD wCompletion;
 LPWFSXDATA lpxKCV;
} WFSPINSECUREKEYENTRYOUT, * LPWFSPINSECUREKEYENTRYOUT;

typedef struct _wfs_pin_import_rsa_public_key
{
 LPSTR lpsKey;
 LPWFSXDATA lpxValue;
 DWORD dwUse;
 LPSTR lpsSigKey;
 DWORD dwRSASignatureAlgorithm;
 LPWFSXDATA lpxSignature;
} WFSPINIMPORTRSAPUBLICKEY, * LPWFSPINIMPORTRSAPUBLICKEY;

typedef struct _wfs_pin_import_rsa_public_key_output
{
 DWORD dwRSAKeyCheckMode;
 LPWFSXDATA lpxKeyCheckValue;
} WFSPINIMPORTRSAPUBLICKEYOUTPUT, * LPWFSPINIMPORTRSAPUBLICKEYOUTPUT;

typedef struct _wfs_pin_export_rsa_issuer_signed_item
{
 WORD wExportItemType;
 LPSTR lpsName;
} WFSPINEXPORTRSAISSUERSIGNEDITEM, * LPWFSPINEXPORTRSAISSUERSIGNEDITEM;

typedef struct _wfs_pin_export_rsa_issuer_signed_item_output
{
 LPWFSXDATA lpxValue;
 DWORD dwRSASignatureAlgorithm;
 LPWFSXDATA lpxSignature;
} WFSPINEXPORTRSAISSUERSIGNEDITEMOUTPUT, * LPWFSPINEXPORTRSAISSUERSIGNEDITEMOUTPUT;

typedef struct _wfs_pin_import_rsa_signed_des_key
{
 LPSTR lpsKey;
 LPSTR lpsDecryptKey;
 DWORD dwRSAEncipherAlgorithm;
 LPWFSXDATA lpxValue;
 DWORD dwUse;
 LPSTR lpsSigKey;
 DWORD dwRSASignatureAlgorithm;
 LPWFSXDATA lpxSignature;
} WFSPINIMPORTRSASIGNEDDESKEY, * LPWFSPINIMPORTRSASIGNEDDESKEY;

typedef struct _wfs_pin_import_rsa_signed_des_key_output
{
 WORD wKeyLength;
 WORD wKeyCheckMode;
 LPWFSXDATA lpxKeyCheckValue;
} WFSPINIMPORTRSASIGNEDDESKEYOUTPUT, * LPWFSPINIMPORTRSASIGNEDDESKEYOUTPUT;

typedef struct _wfs_pin_generate_rsa_key
{
 LPSTR lpsKey;
 DWORD dwUse;
 WORD wModulusLength;
 WORD wExponentValue;
} WFSPINGENERATERSAKEYPAIR, * LPWFSPINGENERATERSAKEYPAIR;

Page 48
CWA 14050-42: 2005

typedef struct _wfs_pin_export_rsa_epp_signed_item
{
 WORD wExportItemType;
 LPSTR lpsName;
 LPSTR lpsSigKey;
 DWORD dwSignatureAlgorithm;
} WFSPINEXPORTRSAEPPSIGNEDITEM, * LPWFSPINEXPORTRSAEPPSIGNEDITEM;

typedef struct _wfs_pin_export_rsa_epp_signed_item_output
{
 LPWFSXDATA lpxValue;
 LPWFSXDATA lpxSelfSignature;
 LPWFSXDATA lpxSignature;
} WFSPINEXPORTRSAEPPSIGNEDITEMOUTPUT, * LPWFSPINEXPORTRSAEPPSIGNEDITEMOUTPUT;

typedef struct _wfs_pin_load_certificate
{
 LPWFSXDATA lpxLoadCertificate;
} WFSPINLOADCERTIFICATE, *LPWFSPINLOADCERTIFICATE;

typedef struct _wfs_pin_load_certificate_output
{
 LPWFSXDATA lpxCertificateData;
} WFSPINLOADCERTIFICATEOUTPUT, *LPWFSPINLOADCERTIFICATEOUTPUT;

typedef struct _wfs_pin_get_certificate
{
 WORD wGetCertificate;
} WFSPINGETCERTIFICATE, *LPWFSPINGETCERTIFICATE;

typedef struct _wfs_pin_get_certificate_output
{
 LPWFSXDATA lpxCertificate;
} WFSPINGETCERTIFICATEOUTPUT, *LPWFSPINGETCERTIFICATEOUTPUT;

typedef struct wfs_pin_replace_certificate
{
 LPWFSXDATA lpxReplaceCertificate;
} WFSPINREPLACECERTIFICATE, *LPWFSPINREPLACECERTIFICATE;

typedef struct _wfs_pin_replace_certificate_output
{
 LPWFSXDATA lpxNewCertificateData;
} WFSPINREPLACECERTIFICATEOUTPUT, *LPWFSPINREPLACECERTIFICATEOUTPUT;

typedef struct _wfs_pin_start_key_exchange
{

 LPWFSXDATA lpxRandomItem;
} WFSPINSTARTKEYEXCHANGE, *LPWFSPINSTARTKEYEXCHANGE;

typedef struct _wfs_pin_import_rsa_enciphered_pkcs7_key
{
 LPWFSXDATA lpxImportRSAKeyIn;
 LPSTR lpsKey;
 DWORD dwUse;
} WFSPINIMPORTRSAENCIPHEREDPKCS7KEY, * LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEY;

typedef struct _wfs_pin_import_rsa_enciphered_pkcs7_key_output
{
 WORD wKeyLength;
 LPWFSXDATA lpxRSAData;
}WFSPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT, *LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT;

typedef struct _wfs_pin_emv_import_public_key
{
 LPSTR lpsKey;
 DWORD dwUse;
 WORD wImportScheme;
 LPWFSXDATA lpxImportData;
 LPSTR lpsSigKey;
} WFSPINEMVIMPORTPUBLICKEY, * LPWFSPINEMVIMPORTPUBLICKEY;

Page 49
CWA 14050-42: 2005

typedef struct _wfs_pin_emv_import_public_key_output
{
 LPSTR lpsExpiryDate;
} WFSPINEMVIMPORTPUBLICKEYOUTPUT, * LPWFSPINEMVIMPORTPUBLICKEYOUTPUT;

typedef struct _wfs_pin_digest
{
 WORD wHashAlgorithm;
 LPWFSXDATA lpxDigestInput;
} WFSPINDIGEST, * LPWFSPINDIGEST;

typedef struct _wfs_pin_digest_output
{
 LPWFSXDATA lpxDigestOutput;
} WFSPINDIGESTOUTPUT, * LPWFSPINDIGESTOUTPUT;

typedef struct _wfs_pin_hsm_init
{
 WORD wInitMode;
 LPWFSXDATA lpxOnlineTime;
} WFSPINHSMINIT, * LPWFSPINHSMINIT;

typedef struct _wfs_pin_generate_KCV
{
 LPSTR lpsKey;
 WORD wKeyCheckMode;
} WFSPINGENERATEKCV, * LPWFSPINGENERATEKCV;

typedef struct _wfs_pin_kcv
{
 LPWFSXDATA lpxKCV;
} WFSPINKCV, * LPWFSPINKCV;

/*===*/
/* PIN Message Structures */
/*===*/

typedef struct _wfs_pin_access
{
 LPSTR lpsKeyName;
 LONG lErrorCode;
} WFSPINACCESS, * LPWFSPINACCESS;

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSPIN__H */

